TJHSST Hallway Traffic Simulation

Paul Woods

Computer Systems Lab

20
08-2009

Abstract

This paper details the creation of a traffic simulation specific to TJHSST. The goal is for the simulation to be accurate and modifiable using depth first search algorithms and traffic formulas and modeling techniques. The simulation will be mapped closely by printing out information and creating visuals. It will then be compared to real-life data and improved until close symmetry is reached. The simulation will then be used to discover and test real change possible for the simulation.

Introduction

With an increased influx of students each year, the hallways in TJHSST are becoming crowding and, at times, hard to navigate. The size of the student body continues to increase, yet unfortunately, our school building is unable to do the same. Over the course of four years at TJHSST, hallway traffic is becoming more congested. Normally, this is not an issue. The increased traffic simply causes students to arrive to class maybe a minute later. However, in the event of an emergency or major event, the traffic could become problematic. While experiments have been done in the past, up to this point, no one has investigated student movement patterns specifically at TJHSST in quite this way before. The simulation will make it easier to view hall traffic, discover what would happen in the event of an unexpected occurrence, and find a way to provide traffic relief to areas with high traffic.

The research will be done several ways. A program will be created that simulates current student movement accurately and is tested by comparing its results to real-life information. A visualization of this program will likely be necessary to be able to clearly discern what the program is discovering. Collecting real-life data, applying logic, and changing variables in the simulation will provide an increased insight into traffic patterns and how they are affected in the event of an unexpected event. By modifying program code, possible solutions can be determined and analyzed. The goal of the project is to create an accurate model of the school, test the model against real-life occurrences to ensure its accuracy, tweak program variables to solve real-life dilemmas, use logic-based analysis to ensure that the results and possible proposed solutions are plausible and realistic, and suggest real-life changes and improvements that could be used to alleviate traffic.

Background

Before creating the experiment, background research involving similar experiments in the past and experiments that can be applied to this particular experiment were viewed. The purpose of this is to see what has already been done, how other people solve similar problems, and how this experiment can be carried out effectively.

One such source was Continuum Crowds, which was created by Adrian Trueille, Seth Cooper, Zoran Popovic in conjunction with the University of Washington, Electronic Arts. The project is designed to determine how to realistically model large crowd movement without collision detection. Collisions and movement were calculated together--as opposed to separately--because crowds tend to already know which areas are likely to be congested and adjust before reaching the congestion.

They created several simulations, including one with 24 people in a hallway, a 2000 person army retreating from a 8001 person army, and a 16 square city block. The researchers concluded that the crowds actually moved more smoothly and realistically when calculating the collisions and movement together, as opposed to separately. The researchers mentioned future areas for continued research which included tighter packed areas, areas where people do not have a common goal in movement, and what they described as "posse chasing," in which certain people are avoided and others are looked for.

Another such source is Finding Multi-Constrained Feasible Paths By Using Depth-First Search, carried out by Zhenjiang L and J.J. Garcia-Luna-Aceves The focus of the research was developing a depth first search algorithm that operated with an unusual number of restrictions. The algorithm was specifically designed for developing routing systems, which requires the consideration of several constraints (such as bandwidth, reliability, end-to-end delay, jitter, and cost).

Another source is Washington and Lee University’s Rance D. Necaise’s research paper titled Interactice Graphics Using OpenGL and the Graphix Windowing Toolkit. The goal of the project was to analyze the Graphics Wnidowing Toolkit, which combines OpenGL and GLUT into an easier interface in order to make graphics easier for create. The result is to determine how to make graphics easier for students who do not have so much time to spend on graphics. The analysis involved primarily testing the new software, and it worked well for what they wanted to accomplish: finding an easier to use alternative to OpenGL and GLUT.

An additonal source is Performance OpenGL: Platform Independence Techniques by Tom True, Brad Grantham, Bob Kuehne, and Dave Shreiner. The part of the paper that I focused on involves errors. The paper explained that functions like glTexImage2d() are particularly vulnerable to errors. The paper explains what the errors are and how they affect performance. These are functions that are used in the code and such analysis will prove helpful in debugging and making display functions more efficient.

 Past experiments specificic to TJHSST have also been done, such as Alex Kotkova’s Traffic Dynamics in Scholastic Environments. The program works on finding a way to map traffic in an TJHSST-esque environment.

Development Sections

Phase 1

The program was tested by implementing the proposed algorithm and recording the time required by the algorithm to find and select routing pathways. The results were that the algorithm can work very effectively, but works best with a smaller number of possible locations.

The input the program will receive currently consists of students with a randomized schedule, and a hash containing a small-scale model room and hallway layout as shown by Figure 1. To test the program in its current state, I ran a simulation in which students would start in one area and be required to find their way to the designated path. This preliminary simulation assumed that each room was approximately three minutes apart and students would leave their classes at exactly 10:05 and would remain in their goal destination once they arrived. I then output student data and then combined it to get the data shown in Table 1.

The program is being made primarily in the C programming language, though it is possible other languages (such as C++ and Java) will be used later in the project to compensate for the weaknesses of the C programming language.

To test the program in its current state, I ran a simulation in which students would start positioned in a room and attempt to find their way to their destination: a different room. This preliminary simulation assumed the following:

1) Each room is located approximately three minutes apart from each other.

2) Students will attempt to take the quickest possible path to their destination.

3) Students will stay in their destination once they arrive.

4) Students move at the same speed, regardless of traffic conditions.

5) All students left their initial location at 10:05 and tried to make sure they arrived at their next location by 10:15.

The initial input into the program is as follows:

· Data containing the miniature school map, written directly into the program code* in the form of a hash.

· Randomly created student schedules

*At this point, there was no point in inputting data by reading a file because the map size manageable. The time and processing used to open and read an input file did not make such a method useful.

Phase 2

Phase two of the program was tested and implemented in the C programming language. The program is tested by implementing the proposed algorithm, outputting program data to a text file as the program runs, reviewing the output, and comparing the output to logical results. In this version, recording the time was not necessary, because this new version of the program runs much more quickly and efficient than the old code.

This new program ads several new components and functions. OpenGL has been added as a critical component. This part of the code is currently in its developmental stages. Testing has been performed, and while the program is not yet at the stage where it can display all forms of student movement that are simulated, it does print the initial screen and window successfully, even though such screens are sparse on actual data.

While the program will receive information from alien sources in later stages of development, the program receives input from itself throughout the code execution. The current focus is not on efficiency or storage, but rather on functionality. In later stages, the entire school will be mapped out, not just a small previously input sample.

The input the program receives consists of several things. The program fills up data about several predetermined students. Such data consists of everything from their names and their schedules throughout the day. The program also contains information about hallways and rooms, which are now implemented as different entities. All of this is done in the C programming language with conjunction of OpenGL. A sample of the program output is listed in Appendix II.

The new project code is organized in a different way. Several layers of organization include hallways, rooms, and students. This new organization allows printing functions to be separated from other functions, though functions can still be called as a result of code written near the top of the program. This new organization is necessary, as the code has reached the point where it spans a length of over eight hundred lines. Confusion and coding inefficiency made this new organization necessary.

The new simulation works with regard to student data, hall data, room data, and other forms of crucial data. Most of this data is stored in hashes, and has been tested extensively several times, as shown by Code 2 located in the appendix. While these areas of the program work fine, there are still areas that are under construction. One such area is the graphics department.

The code currently has the necessary frameworks for graphics. Using OpenGL, the code generates the screen that is necessary to create further graphics. However, because the code is still under construction, critical graphical components that are necessary to discern and use the data in a visual sense are severely lacking. However, these problems do not impair the ability to analyze the data. Because data can be analyzed in text form, analyzing and testing the code is still easy, and such processes of testing have been and still are fully functioning. However, without visualization, presenting and explaining the code will be more difficult, which is why this area needs further improvement.

While the first phase code works well with regards to path determination in a very small and limited area, the second phase requires a broader and more powerful path determination algorithm. While such an algorithm is in development and improving, the algorithm falls short of providing the quick, accurate, and realistic student movement patterns the code is intended to render. Because of this, this algorithm is another area that will be worked on extensively.

Results, Discussion, Conclusion, and Recommendations

The results of the experiment were very positive. These results are based off of the first phase of testing, as the second phase of code, which is intended to be more powerful, more efficient, and work over a much larger area and paths, is still in development. Every student was able to locate his next period and arrive before the start of the next class (10:05). However, by looking at the data, it was clear that the hallways were not utilized efficiently. For instance, at 10:11, the Hall5 hallway had six times as much traffic as Hall4. Every student was not only able to locate his or her destination, but he or she was able to arrive before there before the start of the next class (10:15).

However, there were some problems. Looking at the data, it was clear that the hallways were not utilized efficiently. For instance, at 10:11, the traffic through Hall5 hallway was 600% as congestion as the traffic through Hall4.

This may have been a result of the fact that students did not take into account traffic when selecting movement. Also, the order of the schools could have been switched so to alleviate the traffic.

In the future, when the program is expanded to include the entire school, the program will likely be testing by collecting actual student movement data. There are several ways to do this, including counting the number of total students passing through certain hallways between classes, attaching tracking devices to willing participants, or asking a group of students to respond to survey questions about where they traveled and which areas they consider to be congested.

The results of the next testing was also promising. These results are based on the second phase of code indicated in the Appendices. The results of the testing were printed out in text form to a word file. These results indicated how effectively the program was able to collect and store data in the new program format.

The output and results were as expected. The program effectively stores all forms of data, such as student name and hallway connections. These hashes and arrays are all necessary to implement movement algorithms, which will be refined.

For the third quarter, I plan on expanding the scope of the program’s input to include the entire school and all students. Once this is in place, an accurate and full-fledged simulation can be developed and tested. The third phase of coding will likely involve improvements in the current code related to OpenGL, which will allow visualization of the movement and output. While visualization is not entirely necessary, it will be a huge step toward making the results of the program accessible.

Other improvements planned for the third quarter are also present. Such improvements include an improved text output functions in order to make data clear. This will be helpful not just building visualization but also testing the program. An improved algorithm for determining student movement is another planned improvement. This new algorithm will make the program run more quickly, efficiently, and accurately.

The third quarter will be a big step toward a complete simulation. These improvements will hopefully be the final steps of a fully functioning accurate model and simulation. While the current code works in several aspects, the third quarter expansions will make it applicable and testable in a real-life experiment. These changes are the next step.

Appendices:

Figure 1:

[image: image1.png]5I

I4

Table 1:

Hall Traffic Given Time:

Hall
10:08
10:11

4
60%
10%

5
40%
60%

Example Output From The Phase 1:

StudentName
Start
10:08
10:11
Finish

Student0
Area3
Area5
Area2
Area2

Student1
Area1
Area4
Area5
Area3

Student2
Area1
Area4
Area5
Area3

Student3
Area2
Area5
Area4
Area0

Student4
Area1
Area4
Area5
Area2

Student5
Area3
Area5
Area2
Area2

...

Example Output From Phase 2

Students:

jon

sally

hill

karel

jim

greg

megan

joe

sarah

ROOMS:

RoomNumber:
RoomName
Hall0
Hall1
Hall2
Hall3
Hall4

0

0
0
0
0
0

1

r1230
2
3
0
0
0

2

r1240
1
0
0
0
0

3

r1250
4
2
0
0
0

HALLS:

HallNumber:
Room0
Room1
Room2
Room3
Room4
Room5
Room6

0

1
3
0
0
0
0
0

1

2
0
0
0
0
0
0

2

1
3
0
0
0
0
0

3

1
0
0
0
0
0
0

4

3
0
0
0
0
0
0

SCHEDULES:

StudentNum
Name

Event0
Event1
Event2
Event3

0

0
0
0
0

1

jon
0
1
2
1

2

sally
0
2
3
2

3

hill
0
2
1
1

4

karel
0
2
3
2

5

jim
0
3
2
3

6

greg
0
2
1
1

7

megan
0
2
2
3

8

joe
0
3
1
1

9

sarah
0
3
3
3

HallNum

hall0

hall1

hall2

hall3

Hall0:

0

0

0

0

Hall1:

2

4

0

0

Hall2:

1

3

0

0

Hall3:

2

0

0

0

Hall4:

1

0

0

0

Time-Events Array

Event
Time

0
0

1
905

2
915

3
0

Code:

Phase 1

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

int maxRooms=6;

int maxPaths=4;

int numStudents, spacePerStudent, maxTime; //the maximum number of rooms and max number of rooms connected to each room

void writehash(int* hash, char *ofilename1)

{

FILE* outfile;

outfile= fopen(ofilename1, "wb");

fwrite(hash,sizeof(int),sizeof(int)*maxRooms*maxPaths,outfile);

fclose(outfile);

}

void readhash(char* ofilename1)

{

maxRooms=6;

maxPaths=4;

long lsize;

printf("works\n");

FILE* outfile;

int *temphash;

outfile= fopen(ofilename1, "rb");

fseek(outfile,0,SEEK_END);

lsize=ftell(outfile);

rewind(outfile);

temphash=(int*)malloc(sizeof(int)*lsize);

fread(temphash,sizeof(int),lsize,outfile);

fclose(outfile);

free(temphash);

int i;

for(i=0; i<24; i++)

printf("hash[%i]=%i\n", i, temphash[i]);

}

int main(int argc, char* argv[])

{

char *ofilename1="hashdata7.txt";

numStudents=10;

maxTime=4;

spacePerStudent=2; //first slot is current location, second slot is next location

int *numStudentsRoom; //stores the number of students in each room; index is room number

numStudentsRoom=malloc(sizeof(int)*maxRooms);

int *hash; //stores path between rooms and hallways, index is hallway

hash=malloc(sizeof(int)*maxRooms*maxPaths); //index of room indicates paths connected to it; hash*maxPaths gives room

//value of -1 indicates no path

int *students;

students=malloc(sizeof(int)*numStudents*spacePerStudent);

/*

demo info:

0: room1

1: room2

2: room3

3: room4

4: hall1

5: hall2

*/

hash[0]=4;

hash[1]=-1;

hash[2]=-1;

hash[3]=-1;

hash[4]=4;

hash[5]=-1;

hash[6]=-1;

hash[7]=-1;

hash[8]=5;

hash[9]=-1;

hash[10]=-1;

hash[11]=-1;

hash[12]=5;

hash[13]=-1;

hash[14]=-1;

hash[15]=-1;

hash[16]=0;

hash[17]=1;

hash[18]=5;

hash[19]=-1;

hash[20]=2;

hash[21]=3;

hash[22]=4;

hash[23]=-1;

writehash(hash, ofilename1);

readhash(ofilename1);

/*

for(i=0; i<24; i++)

printf("hash[%i]=%i\n", i, hash[i]);

*/

int value;

for(i=0; i<numStudents*spacePerStudent; i=i+spacePerStudent)

{

value=rand()%(maxRooms-2); //leave out hallways for this example

students[i]=value;

while(value==students[i])

{

value=rand()%(maxRooms-2); //leave out hallways for this example

}

students[i+1]=value;

}

//for(i=0; i<numStudents*spacePerStudent; i++) //creates student and designates schedule

//printf("student[%i]=%i\n", i, students[i]);

//Following code will determine how the students travel

int *paths;

paths=malloc(sizeof(int)*numStudents*maxTime); //array stores the paths the students are taking. Index is student and then the steps at the time intervals

int i3;

int beststep; //best next step

int nextstep; //next step to take to get to finish

int step; //stores last step

int start, end;

int *possiblePaths;

int possible;

int t; //stores time

int flag;

for(i=0; i<numStudents*spacePerStudent; i=i++) //designate path for student to take, i is index of student

{

flag=0;

//need to set the path to th nextstep NEXT CLASS NEXT THING TO DO

nextstep=students[i*spacePerStudent];

//paths[i]=nextstep; //first time interval has all students at starting location

end=students[i*spacePerStudent+1];

step = students[i*spacePerStudent];

paths[i*maxTime]=students[i*spacePerStudent];

for(t=1; t<maxTime; t++)

{

start=step;

beststep=-1;

for(i3=0; i3<maxPaths; i3++) //finds possible paths from start to finish

{

if(flag==1)

{

beststep=-1;

break;

}

//
printf("i:%i,%i step:%i\n", i, i3, step);

possible=hash[step*maxPaths+i3];

//
printf("possible:%i beststep:%i\n", possible, beststep);

if(possible!=students[i*spacePerStudent])

{

if(possible==-1)

break;

if(possiblePaths[i3]==end)

{

beststep=possible;

break;

}

if(possible>beststep && beststep!=end) //for this model, greatest value is always best unless actual value

beststep=possible;

}

//
printf("possible:%i beststep:%i\n", possible, beststep);

}

paths[i*maxTime+t]=beststep;

step=paths[i*maxTime+t];

if(beststep==end)

{

flag=1;

}

}

}

for(i=0; i<numStudents*maxTime; i++)

{

//printf("paths[%i]=%i\n", i, paths[i]);

if(paths[i]==-1)

paths[i]=paths[i-1];

}

//PRINT OUT THE STUDENT ARRAYS

printf("\nStudentName\tStart\t10:08\t10:11\tFinish\n\n", i/numStudents, paths[i], paths[i+1],paths[i+2],paths[i+3]);

int room41;

int room42;

int room51;

int room52;

room41=room42=room51=room52=0;

for(i=0; i<numStudents*maxTime; i=i+maxTime)

{

printf("Student%i\tArea%i\tArea%i\tArea%i\tArea%i\n", i/maxTime, paths[i], paths[i+1],paths[i+2],paths[i+3]);

if(paths[i+1]==4)

room41++;

if(paths[i+2]==4)

room42++;

if(paths[i+1]==5)

room51++;

if(paths[i+2]==5)

room52++;

}

printf("\nHall\t\t\t10:08\t10:11\n");

printf("\n4\t\t\t%i0%\t%i0%", room41, room42);

printf("\n5\t\t\t%i0%\t%i0%\n", room51, room52);

//array=malloc(sizeof(int)*200);

//printf("%i", sizeof(int));

}

Phase 2:

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

#include <ctype.h>

#include <GL/glut.h>

//initial values

//Type

Name

Value

Explanation

static int

numRooms

=4;
//Number of rooms in school

static int

numHalls

=5;
//Number of halls in school

static int

maxRoomNameSize

=10;
//Maximum number of chars in a roomName

static int

maxHallsPerRoom

=5;
//Number of halls a room can lead to

static int

maxRoomsPerHall

=7;
//Maximum number of rooms in a hall

char*

roomNameHash;

//Hash containing names for rooms

int*

roomHallsHash;

//Hash containing halls given rooms

int*

hallsRoomHash;

//Hash containing rooms given halls

int*

hallsHalls;

int

maxHallsPerHall

=4;

int

debug

=1;
//0 indicates debug mode off, 1 indicates debug mode on

char*

studentArray;

//has students and names

int*

scheduleArray;

//has students and schedules

static int

numStudents

=10;
//Number of students for school

static int

studentNameSize

=10;
//Max Size a Student's Name Could Be

static int

numEvents

=4;
//Max number of events (classes, getting off bus, etc)

int

currtime

=905;
//CurrentTime

int

currEvent

=1;
//CurrentEvent, locked to currTime

int*

timeEventArray;

//TellsWhatTimeEventsOccur

int

screensizex

=1000;

int

screensizey

=1000;

char* printStudentName(int num);

char* printStudentNameData();

/////////////////////////////////

//***PRINT FUNCTIONS**********///

/////////////////////////////////

void printintarray(int* array);

void printHallofHall(int hall1);

void printHallsHalls();

void printEventArray();

void printEvent(int eventNum);

char* printStudentName(int num);

char* printStudentNameData();

void printRoomData(int roomNumber);

void printRoomNamesData(int roomNumber);

void printAllRoomData();

void printHallData(int hallNumber);

void printAllHallsData();

void printClasses(int studentNum);

void printSchedules();

///////////////////////////////////

//***END PRINT FUNCTIONS********//

///////////////////////////////////

//IMPORTANT NOTE: THERE IS NO ROOM 0 OR EVENT 0 (BUT RIGHT NOW, THERE IS A HALL 0, though there shouldn't be). EVENTS WITH 0 INDICATE NOT INPUTTED OR ERRORS.

//**************************************//

//***FUNCTION PRINTER METHODS***//

//**************************************//

void printintarray(int* array)

{

int i;

int size;

size=sizeof(array);

for(i=0; i<size; i++)

{

printf("called\n");

printf("ArrayPos%i, Value=%i\n", i, array[i]);

}

}

//b001

//**************************************//

//***START OF BUILDING ROOM NAMES HASH****//

//**************************************//

void fillroomNameGaps()

{

int i;

for(i=0; i<maxRoomNameSize*numRooms; i++)

{

if(isalnum(roomNameHash[i]))

printf("ok\n");

else

roomNameHash[i]=' ';

}

}

void addNameToRoomHash(int roomNumber, char* roomName)

{

int size=strlen(roomName);

int i;

for(i=0; i<maxRoomNameSize; i++)

{

if(i<size)

roomNameHash[roomNumber*maxRoomNameSize+i]= roomName[i];

else

roomNameHash[roomNumber*maxRoomNameSize+i]= ' ';

}

}

void buildRoomNameHash()

{

roomNameHash=malloc(sizeof(int)*numRooms*maxRoomNameSize);

fillroomNameGaps();

}

char* getRoomName(int roomNumber)

{

char* roomName = malloc(sizeof(char)*maxRoomNameSize);

int i;

for(i=0; i<maxRoomNameSize; i++)

roomName[i] = roomNameHash[roomNumber*maxRoomNameSize+i];

return roomName;

}

//**************************************//

//***END OF BUILDING ROOM NAMES HASH****//

//**************************************//

//b002

//***//

//***START OF BUILDING HALLS TO ROOM HASH****//

//***//

void addHallToRoomHallsHash(int roomNumber, int* hallNumber)

{

int i;

for(i=0; i<maxHallsPerRoom; i++)

roomHallsHash[roomNumber*maxHallsPerRoom+i]= hallNumber[i];

}

int* newHallNumbersArray1(int i1)

{

int* hallNumbersArray=malloc(sizeof(int)*maxHallsPerRoom);

hallNumbersArray[0]=i1;

return hallNumbersArray;

}

int* newHallNumbersArray2(int i1, int i2)

{

int* hallNumbersArray=malloc(sizeof(int)*maxHallsPerRoom);

hallNumbersArray[0]=i1;

hallNumbersArray[1]=i2;

return hallNumbersArray;

}

int* newHallNumbersArray3(int i1, int i2, int i3)

{

int* hallNumbersArray=malloc(sizeof(int)*maxHallsPerRoom);

hallNumbersArray[0]=i1;

hallNumbersArray[1]=i2;

hallNumbersArray[2]=i3;

return hallNumbersArray;

}

void buildRoomHallsHash()

{

roomHallsHash=malloc(sizeof(int)*numRooms*maxHallsPerRoom);

}

int* getHallsOfRoom(int roomNumber)

{

int *halls = malloc(sizeof(int)*maxHallsPerRoom);

int i;

for(i=0; i<maxHallsPerRoom; i++)

halls[i] = roomHallsHash[roomNumber*maxHallsPerRoom+i];

return halls;

}

void buildHallsRoomHash()

{

hallsRoomHash=malloc(sizeof(int)*numHalls*maxRoomsPerHall);

int roomNumber;

int j;

for(j=0; j<numHalls*maxRoomsPerHall; j++)

hallsRoomHash[j]=0;

for(roomNumber=0; roomNumber<numRooms; roomNumber++)

{

int *halls=getHallsOfRoom(roomNumber);

int j;

for(j=0; j<maxHallsPerRoom; j++)

{

int temp;

int addToIndex;

addToIndex=0;

temp = halls[j];

if(hallsRoomHash[temp*maxRoomsPerHall+addToIndex]>0)

addToIndex++;

hallsRoomHash[temp*maxRoomsPerHall+addToIndex] = roomNumber;

}

}

}

int* getRoomsOfHall(int hallNumber)

{

int *rooms = malloc(sizeof(int)*maxRoomsPerHall);

int i;

for(i=0; i<maxRoomsPerHall; i++)

rooms[i] = hallsRoomHash[hallNumber*maxRoomsPerHall+i];

return rooms;

}

//***//

//***END OF BUILDING HALLS TO ROOM HASH****//

//***//

//***//

//***START OF HALLS TO HALLS INFO****//

//***//

void clearIntArray(int* array) //sets all values to 0

{

int i;

int size;

size=sizeof(array);

for(i=0; i<size; i++)

array[i]=0;

}

int getHallofHall(int hall, int index)

{

return hallsHalls[hall*maxHallsPerHall+index];

}

int* getHallsHall(int hall)

{

int i;

int* array;

array=malloc(sizeof(int)*maxHallsPerHall*numHalls);

for(i=0; i<maxHallsPerHall; i++)

{

array[i]=getHallofHall(hall, i);

}

return array;

}

void addHallsHalls(int hall1, int hall2)

{

int i;

int j;

i=j=0;

while(hallsHalls[hall1*maxHallsPerHall+i]!=0)

i++;

while(hallsHalls[hall2*maxHallsPerHall+j]!=0)

j++;

if(i>maxHallsPerHall)

printf("ERROR! TOO MANY HALLS IN HALL%i WHEN TRIED TO ADD HALL%i\n", hall1, hall2);

if(j>maxHallsPerHall)

printf("ERROR! TOO MANY HALLS IN HALL%i WHEN TRIED TO ADD HALL%i\n", hall2, hall1);

hallsHalls[hall1*maxHallsPerHall+i]=hall2;

hallsHalls[hall2*maxHallsPerHall+j]=hall1;

}

void fillHallsHalls()

{

addHallsHalls(1,2);

addHallsHalls(1,4);

addHallsHalls(2,3);

}

void buildHallsHalls()

{

hallsHalls=malloc(sizeof(int)*numHalls*maxHallsPerHall);

clearIntArray(hallsHalls);

fillHallsHalls();

int i;

}

void printHallofHall(int hall1)

{

int i;

int* array;

array=getHallsHall(hall1);

for(i=0; i<maxHallsPerHall; i++)

printf("\t%i\t", getHallofHall(hall1, i));

}

void printHallsHalls()

{

printf("\n");

int i,j;

printf("HallNum\t");

for(j=0; j<maxHallsPerHall; j++)

printf("\thall%i\t", j);

printf("\n");

for(i=0; i<numHalls; i++)

{

printf("Hall%i:\t", i);

printHallofHall(i);

printf("\n");

}

}

//***//

//***END OF HALLS TO HALLS INFO****//

//***//

//***//

//***START OF BUILDING SCHEDULE INFO****//

//***//

void buildScheduleArray()

{

scheduleArray=malloc(sizeof(int)*numStudents*numEvents);

int i;

for(i=0; i<numStudents*numEvents; i++)

scheduleArray[i]=0;

}

int* getSchedule(int studentNum)

{

int* schedule;

schedule=malloc(sizeof(int)*numEvents);

int i;

for(i=0; i<numEvents; i++)

schedule[i]=scheduleArray[studentNum*numEvents+i];

return schedule;

}

int getEvent(int student, int pd)

{

int *schedule;

schedule=getSchedule(student);

return schedule[pd];

}

void addClass(int studentNum, int pd, int class)

{

scheduleArray[studentNum*numEvents+pd]=class;

}

void addSchedule(int studentNum, int* schedule)

{

if(sizeof(schedule)!=sizeof(int)*numEvents)

printf("ADD SCHEDULE FUNCTION ERROR. SCHEDULE SIZE IS TOO LARGE OR TOO SMALL.");

else

{

int pd;

for(pd=0; pd<numEvents; pd++)

addClass(studentNum,pd,schedule[pd]);

}

}

void fillScheduleRandom()

{

int i;

for(i=numEvents; i<(numStudents)*numEvents; i++)

{

if(i%numEvents!=0)

scheduleArray[i]=(int)(rand()%(numEvents-1)+1);

}

}

void setScheduleData()

{

fillScheduleRandom();

}

void buildSchedules()

{

buildScheduleArray();

setScheduleData();

addClass(1,1,1);

}

//***//

//***END OF BUILDING SCHEDULE DATA*****//

//***//

void buildStudentArray()

{

studentArray=malloc(sizeof(char)*numStudents*studentNameSize);

}

void addStudentName(int num, char* name)

{

int size=strlen(name);

int i;

for(i=0; i<studentNameSize; i++)

{

if(i<size)

studentArray[num*studentNameSize+i]=name[i];

else

studentArray[num*studentNameSize+i]=' ';

}

}

void setRoomData()

{

addNameToRoomHash(1, "r1230");

addHallToRoomHallsHash(1, newHallNumbersArray2(2,3));

addNameToRoomHash(2, "r1240");

addHallToRoomHallsHash(2, newHallNumbersArray1(1));

addNameToRoomHash(3, "r1250");

addHallToRoomHallsHash(3, newHallNumbersArray2(4,2));

}

void fillStudentNameGaps()

{

int i;

for(i=0; i<studentNameSize*numStudents; i++)

studentArray[i]=' ';

}

void setStudentData()

{

addStudentName(1,"jon");

addStudentName(2,"sally");

addStudentName(3,"hill");

addStudentName(4,"karel");

addStudentName(5,"jim");

addStudentName(6,"greg");

addStudentName(7,"megan");

addStudentName(8,"joe");

addStudentName(9,"sarah");

}

void buildStudents()

{

buildStudentArray();

fillStudentNameGaps();

}

char* getStudentName(int num)

{

int i;

char* name;

name=malloc(sizeof(char)*studentNameSize);

for(i=0; i<studentNameSize; i++)

{

if(isalpha(studentArray[num*studentNameSize+i]))

name[i] = studentArray[num*studentNameSize+i];

else

name[i] = ' ';

}

return name;

}

//**************************************//

//***END OF STUDENTS ARRAY FUNCTIONSY****//

//**************************************//

//**************************************//

//***EVENTS ARRAY****//

//**************************************//

void setEventTime(int eventNum, int time)

{

timeEventArray[eventNum]=time;

}

void setEventTimeValues()

{

setEventTime(1, currtime);

setEventTime(2, 915);

}

void buildEventsArray()

{

timeEventArray=malloc(sizeof(int)*numEvents);

clearIntArray(timeEventArray);

setEventTimeValues();

}

//**//

//***START OF PRINTING EVENTS FUNCTIONS****//

//**//

void printEvent(int eventNum)

{

printf("%i\t%i\n", eventNum, timeEventArray[eventNum]);

}

void printEventArray()

{

printf("\nTime-Events Array\n");

printf("Event\tTime\n");

int i;

for(i=0; i<numEvents; i++)

printEvent(i);

printf("\n");

}

//**//

//***END OF PRINTING EVENTS FUNCTIONS****//

//**//

//**//

//***START OF PRINTING ROOMS FUNCTIONS****//

//**//

//a001

//**//

//***START OF PRINTING ROOMS FUNCTIONS****//

//**//

char* printStudentName(int num)

{

int i;

char* name;

name=malloc(sizeof(char)*studentNameSize);

name=getStudentName(num);

for(i=0; i<studentNameSize; i++)

printf("%c", name[i]);

free(name);

}

char* printStudentNameData()

{

printf("\nStudents:\n");

int i;

i=numStudents;

for(i=0; i<numStudents; i++)

{

printStudentName(i);

printf("\n");

}

}

void printRoomData(int roomNumber) //prints all room data

{

int i;

printf("%i\t\t", roomNumber);

char* roomName=malloc(sizeof(char)*maxRoomNameSize);

roomName = getRoomName(roomNumber);

for(i=0; i<maxRoomNameSize; i++)

printf("%c", roomName[i]);

int *halls = malloc(sizeof(int)*maxHallsPerRoom);

halls=getHallsOfRoom(roomNumber);

for(i=0; i<maxHallsPerRoom; i++)

printf("\t%i", halls[i]);

printf("\n");

free(roomName);

free(halls);

}

void printRoomNamesData(int roomNumber) //prints only room names data

{

int i;

printf("RoomNumber:\tRoomName\n");

printf("%i\t\t", roomNumber);

for(i=0; i<maxRoomNameSize; i++)

printf("%c", roomNameHash[roomNumber*maxRoomNameSize+i]);

printf("\n");

}

void printAllRoomData()

{

printf("\n\nROOMS:\n\n");

printf("RoomNumber:\tRoomName");

int j;

for(j=0; j<numHalls; j++)

printf("\tHall%i", j);

printf("\n");

int i;

for(i=0; i<numRooms; i++)

printRoomData(i);

}

void printHallData(int hallNumber) //prints hall data

{

int i;

printf("%i\t", hallNumber);

int *rooms = malloc(sizeof(int)*maxRoomsPerHall);

rooms=getRoomsOfHall(hallNumber);

for(i=0; i<maxRoomsPerHall; i++)

printf("\t%i", rooms[i]);

printf("\n");

free(rooms);

}

void printAllHallsData()

{

printf("\n\nHALLS:\n\n");

printf("HallNumber:");

int j;

for(j=0; j<maxRoomsPerHall; j++)

printf("\tRoom%i", j);

printf("\n");

int i;

for(i=0; i<numHalls; i++)

printHallData(i);

}

void printClasses(int studentNum)

{

int *schedule;

schedule=getSchedule(studentNum);

int i;

for(i=0; i<numEvents; i++)

printf("%i\t", schedule[i]);

}

//**//

//***END OF PRINTING ROOMS FUNCTIONS****//

//**//

//**//

//***START OF PRINTING SCHEDULE FUNCTIONS****//

//**//

void printSchedules()

{

int i;

printf("\n\nSCHEDULES:\n\n");

printf("StudentNum\tName\t\t");

for(i=0; i<numEvents; i++)

printf("Event%i\t", i);

printf("\n");

for(i=0; i<numStudents; i++)

{

printf("%i\t\t", i);

printStudentName(i);

printf("\t");

printClasses(i);

printf("\n");

}

}

//**//

//***END OF PRINTING ROOMS FUNCTIONS****//

//**//

//**************************************//

//***CALCULATE STUDENT PATH FUNCTIONS****//

//**************************************//

void buildHashes() //builds room and hall hashes

{

buildRoomNameHash();

buildRoomHallsHash();

setRoomData();

buildHallsRoomHash(); //must be done after building rooms hall hash and setting data

buildStudents();

setStudentData();

printStudentNameData();

buildSchedules();

buildHallsHalls();

buildEventsArray();

}

//**************************************//

//***END OF PRINTING ROOMS FUNCTIONS****//

//**************************************//

//****END ROOM INFO****//

//**************************************//

//***START OF STUDENT PATH FUNCTIONS ARRAY****//

//**************************************//

void calculateStudentPath(int studentNum)

{

int currentLoc, goalLoc; //locations

int totaltime;

currentLoc=getEvent(studentNum, currEvent);

if(currEvent>=numEvents)

printf("ERROR, EVENT DOES NOT EXIST, MUST RESET DAY!!\n");

goalLoc=getEvent(studentNum, currEvent+1);

printf("student:%i\tcurrentLoc:%i\tgoalLoc:%i\n",studentNum,currentLoc,goalLoc);

int* possibleHalls=getHallsOfRoom(currentLoc);

totaltime=timeEventArray[currEvent+1]-timeEventArray[currEvent];

int maxH;

maxH=sizeof(totaltime);

printf("time:%i\n",totaltime);

int* path=malloc(sizeof(int)*totaltime);

path[0]=100+currentLoc; //100 indicating its a room

path[1]=possibleHalls[(int)(rand()%maxH)];

int i;

printf("path[%i]=%i\n",0,path[0]);

for(i=1; i<totaltime; i++)

{

if(path[i-1]>100)

possibleHalls=getHallsOfRoom(path[i-1]-100);

else

possibleHalls=getHallsHall(path[i-1]);

//if(path[i-1]!=goalLoc)

//path[i]=possibleHalls[1];

path[i]=possibleHalls[0];

printf("path[%i]=%i\n",i,path[i]);

}

//printintarray(possibleHalls);

}

void calculateStudentPaths()

{

int i;

for(i=1; i<numStudents; i++)

calculateStudentPath(i);

}

//z001

//MAIN FUNCTION--------------

void display()

{

int width = 999;

int height = 749;

glEnable(GL_TEXTURE_2D);

glColor3f(0.0,0.0,0.0);

glClear(GL_COLOR_BUFFER_BIT);

glGetTexImage(GL_TEXTURE_2D,0,GL_RGB,GL_UNSIGNED_INT,"tj-floorplans2007.jpg");

glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,0.5,0.5,0,GL_RGB,GL_DOUBLE,0);

glBegin(GL_QUADS);

glColor3f(0.9,0.0,0.0);

glTexCoord2f(0.0, 0.0);

glTexCoord2f(1.0, 0.0);

glTexCoord2f(1.0, 1.0);

glTexCoord2f(0.0, 1.0);

glEnd();

//glutSwapBuffers();

glFinish();

}

int main(int argc, char* argv[])

{

buildHashes();

if(debug>0)

{

printAllRoomData();

printAllHallsData();

printSchedules();

printHallsHalls();

printEventArray();

glutInit(&argc,argv);

glutInitWindowSize(screensizex,screensizey);

glutCreateWindow("OPEN GL TRAFFIC SIMULATION");

glClearColor(1.0,1.0,1.0,0.0);

glShadeModel(GL_SMOOTH);

glutDisplayFunc(display);

glutIdleFunc(NULL);

glutMainLoop();

}

//return?

}

Works Cited

Traffic Dynamics in Scholastic Environments by Alex Kotkova

Continuum Crowds by Adrian Trueille, Seth Cooper, Zoran Popovi

Finding Multi-Constrained Feasible Paths By Using Depth-First Search by Zhenjiang L and J.J. Garcia-Luna-Aceves

Performance OpenGL: Platform Independence Techniques

by Tom True, Brad Grantham, Bob Kuehne, and Dave Shreiner.

Interactive Graphics Using OpenGL and the Graphix Windowing Toolkit

by Rance D. Necaise, Computer Science Department Washington and Lee University

Thanks to Masood, Chris, Mr. Latimer, and Mr. Torbert for helping me a lot.

