
Development of an Object-Oriented
Module-based Extensible Student Intranet

Web Application in PHP5

Andrew Deason, Eric Harmon, Bryan Rau-Jacobs, Andrew Smith

April 6th, 2006

Abstract

Intranet is the current system used for students to sign up for
8th period activities, look up information about students, and pro-
vide other school related functions. It is a web application written in
PHP, and authenticates students and faculty against the school Nov-
ell system. It was designed many years ago by students, and that age
is showing. It is not designed in an object-oriented approach, and is
very difficult to extend or add new features to. Since new requests
for Intranet are building up every day, we need a new platform for
developing new features and fixing bugs. This new platform, known
as Intranet2, has been nicknamed ’Iodine’, which will implement sev-
eral ideas in Object-Oriented programming and collaborative develop-
ment. We will use a LAMP-like server setup, consisting of the Linux
operating system, the Apache2 web server, a MySQL database, and
the PHP5 programming language. We will also be using the Smarty
template system, for increased separation of programming code and
display code.

1 Goals

Our goal in the is project is to create a robust, extensible system that will
grow and adapt to the needs of the school. The intent is to create a system
with such flexibility that it will not need to be replaced in the near future. It
should be as bug free as possible, easy to use, and optimized for speed. We

1

also hope that this system will be portable to any other environment with
very few changes, so other schools or organizations may one day integrate
this application into their network.

2 Application Structure

The majority of Intranet2 is coded in PHP5, a server-side language primarily
used for websites that also supports an Object-Oriented programming model.
We will also make use of XHTML, CSS, Javascript, and the Smarty template
engine for displaying information.

2.1 Modular Structure

Every single line of code (except for about five short utility functions) belong
to a specific module. For every intrabox that is displayed, and all content
that is displayed in the primary pane, there is a module responsible for it.
The module called ‘core’ handles all requests, parses the arguments in the
URL, and passes off control to the appropriate module.

Information that is passed around is also done in an abstracted object-
oriented fashion, instead of directly manipulating the database each time. In
old intranet, the code to get information for a student might look something
like this:

$addrquery=mysql_query("SELECT Address, City, State

FROM StudentInfo

WHERE username LIKE \"$user\"");

$arr = mysql_fetch_array($addrquery);

$address = $arr[‘Address’];

$city = $arr[‘City’];

$state = $arr[‘State’];

This uses SQL directly to access student information, so if the database
structure changes at all, this code is worthless. However, in Intranet2, the
code might look similar to this:

$usr = new User($username);

$address = $usr->address;

$city = $usr->city;

$state = $usr->state;

2

Here, if the underlying structure of the database changes, then the module
‘User’ must accomodate for that, but all other modules using User to get
information will not have to change their code.

2.2 Automatic Loading of Modules

The special function called autoload in PHP allows for this modular struc-
ture to be used with great ease. In the above example, the code refer-
enced a class called ‘User’, which is not a normal PHP class. When the
PHP interpreter discovers that the class does not exist, it calls the function
autoload (which has been defined in the application). This function in-

cludes the appropriate file with the class definition for that class (which is
modules/user/user.class.php5). If the class has not been defined after calling
autload, then an error is thrown. This allows for modularization of all of

our code without needing to define which modules we will actually be using.
Modules are just loaded non-demand as they are needed.

2.3 Displaying Information

The system of displaying information is not simply using print and echo
statements to output code, since there are several problems with that system.
For instance, usually there is some code that is output on every page load,
the header you see at the top of the page. However, if a module loaded after
the header is displayed decides that it wants to redirect the user to another
page, it can’t if the header has already been displayed. This is a limitation
of the HTTP protocol, but we have a solution to it.

Instead of issuing a print or echo statement when a module wants to
display something, it calls the method $disp->display() with the informa-
tion it wants to display. The $disp variable is an object of the Display class
which is given to the module by Display itself, or by the core module. Display
buffers the information that the module requested to be displayed, and only
displays it at the end of processing, when we are sure that the information
actually needs to be written to the display.

This has the added advantage of being able to keep track of what modules
have tried to display what, and allows for an easy, flexible, template system
called Smarty. Smarty is project for PHP that allows a programmer to
pass variables to a template, and displays information using those variables.

3

The Smarty language is very simplistic, and thus forces the programmer to
separate design code from processing code.

3 Usability Tests

We enlisted the help of an external tester, Chase Albert, to test how intuitive
and usable the general interface was. Chase represents an average user, giving
us an insight into just how well the user experience is in Iodine. Fortunately,
his honesty allowed us to track down a few bugs, confusions, and ambiguities.
Through this we were able to improve the average user’s experience while
using Iodine. Hopefully, this will allow us to reduce user error due to overly
precise or technical terminology. Recent research has shown that users are
often confused by systems which are designed solely by programmers, who
picture their users to be at the same level as themselves. The changes as a
result of these tests are reflected in the screenshots.

4 Developer Management

There were several developers working together as a team to create several
sections of Iodine, so a few tools were required to organize and lead them.
One of these tools is a Revision Control System (RCS), a system which allows
several versions of code to be stored, and it keeps a record of who changed
what and when. The particular RCS that we use is a system called Mercurial.
This also allows developers to run their own instance of the application at
home, or in any other environment, and allows them to work on the code
without any access to the central repository.

The Intranet2 project also made use of the TJforge system, which is
powered by the Trac project. Trac allows mutliple developers to contribute
to a project-wide wiki system, explaining some of the larger aspects of the
project. The greatest advantage of using Trac, however, is the ticket sys-
tem. A ‘ticket’ is either a bug request, or a feature request, or some kind
of ehancement to the application, or something. These allow developers to
have a common place to see what there is to do, and to keep track of whom
is fixing what bugs.

We also use the phpDoc system, which allows developers to document
code in the code itself in the form of formatted comments. This is similar to

4

the JavaDoc system, but for PHP. An example might look like this:

/**

* Determines whether the specified user has a certain permission in

* this group.

*

* @param User $user The user for which to check the permission.

* @param string $perm Which permission to check to see if the user

* has.

* @return bool TRUE if $user has permission $perm in this group,

* FALSE otherwise.

*/

public function has_permission(User $user, $perm) {

This allows quality documentation to be generated from information that
is created as the developers are creating the code itself.

5

