
Developing an AI Player for Guess Who
By Jason Pan

Abstract
My project is to create a computerized version of the

popular Milton Bradley game “'Guess Who?” complete with an
AI player. This involves two research areas: Natural Language
Processing and Data Mining. Data mining is the analysis of
data and the use of software techniques for finding patterns and
regularities in sets of data. My project can be divided into two
major phases: Developing the Game Interface and Developing
the AI Player. My game interface consists of a matrix of
buttons with pictures of the suspects and an input text field
where questions can be entered. My AI's strategy algorithm
will formulate questions that eliminate 50% of the suspects,
which is the optimal percentage. If my program can beat an
opponent at least half of the time, then I can deem it successful.

Rules
One of my favorite childhood pastimes during really

long road trips was Milton Bradley’s ''Guess Who?'', a
simple two-player game. In it each player has a board
with pictures of twenty different people labeled with their
names. To begin, the opponents each choose a mystery
person from the list of twenty. Afterwards in subsequent
turns, each player asks his opponent a yes-or-no question
about the Mystery Person, and he then uses the clues to
narrow down the twenty suspects into the answer. A
player can only guess the opponent’s mystery person
once, and if he succeeds he wins the game.

Data Mining
Data mining, also known as knowledge-discovery in

databases (KDD), uses computational techniques like
statistics and pattern recognition. Although it is usually used
in relation to analysis of data, data mining, like artificial
intelligence, is an umbrella term and is used with varied
meaning in a wide range of contexts. Its official definition is
the ''nontrivial extraction of implicit, previously unknown, and
potentially useful information from data.'' This encompasses
a number of technical approaches, such as clustering, data
summarization, learning classification rules, finding
dependency networks, analyzing changes, and detecting
anomalies. My project however implements an elementary
form of KDD; one that does not require complicated equations
or extremely sophisticated search algorithms. Developing data
mining software often involves corporate funding in the
millions and teams of programmers working in cooperation
with project deadlines of years. Because I work solo and only
have the length of an year, my project can at best produce
only a crude but effective data mining function.

Algorithm
I have been an avid player of Guess Who for at least

four years. The beauty of the game is its infiniteness of
possibilities. I have never seen the exact same game play
duplicated twice. In the real world, questions can be as
long and complicated as desired. However constrained to
the still primitive reality of today's computers, there are
limitations on the player’s ability to compose creative
queries. Still this is only a minor hindrance since most
players can compute only up to two or three traits.
Usually the safest strategy is to ask questions that for yes
or no will eliminate half of the suspects. Some bold
individuals dare a move whose breakdown lets say is if
''yes,'' eliminate 70% of the suspects, and ''no,'' eliminate
30%. This is unnecessarily dangerous, since if ''no'' is the
response, the player will suffer a major setback. The
proper strategy is to make steady gains, every turn
eliminating the volume of suspects by a factor of two, and
wait for the opponent to make a sloppy mistake and fall
behind. It is only appropriate to gamble a risky, uneven
question when the opponent has much smaller volume of
suspects than you do.

The AI strategy algorithm is simple. Using a depth
first search, iterate through the list of traits. If any trait is
shared by 45%-55% of the current roster of suspects, that
trait is formed into a question. If not, the AI moves on to
plan B. The percentage each trait eliminates is recorded in
an array. On a systematic basis two traits are chosen, and
every possible combination is run through it. These
include adding a conjunction or prefixing a ''not.'' Each
scenario is checked on whether the condition is met. For
''and,'' the previously-calculated percentages of both traits
are multiplied together. For ''or,'' they are added up.
Adding a ''not'' subtracts the trait’s percentage from 100.
During all of this, any question whose range falls between
35%-65% is stored onto an array in sorted order. In the
event that no question matches the original description, the
next best question is popped out and used. Lastly if all
else fails, a random question will be selected. In the event
that opponent has 2/3 or less of the suspects of the AI, in
order catch up the percentage constraint will be
temporarily expanded to 25%-75% to allow a possible
catch up.

Implementation
I decided to code my game in Java because of my

substantial experience with it and the language's conveniently
built-in GUI. My game is very low budget and the only
resources I needed were a java compiler and internet access.
The research paper was written in LaTex, and this poster and
the Powerpoint presentation was created using OpenOffice on
Linux machines.

My project consists of four files. To store the suspects I
wrote a special Person class whose fields were physical
attributes. The object has a constructor, modifying methods,
retrieval methods, and an equals method. GIPanel.java is the
main file, and it comprises of the two-player game interface.
An extended one-player version is AIPanel.java, which in
addition contains the AI opponent. Both of these files are
saved in JPanel form, which Driver.java then loads up and runs.

My project can be divided into three iterations, each of
which required one school year quarter. The fourth quarter was
spent on completing the research paper and preparing this
poster and a Powerpoint presentation. First quarter I
concentrated mostly on research and organization. Second
quarter was focused on Game Structure and Logistics, and third
quarter was spent researching and developing the AI agent.

Natural Language
Processing

Although I did not plan so, my project
involves elements of Natural Language
Processing. The nature of Guess Who is
that the user enters questions, which my
program then has to break down and
interpret. To achieve such a task I wrote a
very primitive natural language processor.
The user can only enter up to five words
into the input text field. This includes a
maximum of two traits and one
conjunction connecting them. To prevent
any input typos, I created a panel of
buttons that the user presses to formulate
his question. The syntax of the input must
be precise, and I added a throw exception
clause to catch any errors. If the format of
the question is not exactly correct, the
program will not accept it and asks the user
to rewrite his query.

