


Developing an AI Player for ”Guess Who?”

Jason Pan

Period 2

1



Abstract

My project is to create a computerized version of the popular Milton Bradley
game ”Guess Who?” complete with an AI player. This involves two research
areas: Natural Language Processing and Data Mining. Data mining is the
analysis of data and the use of software techniques for finding patterns and
regularities in sets of data. My project can be divided into two major phases:
Developing the Game Interface and Developing the AI Player. My game
interface consists of a matrix of buttons with pictures of the suspects and an
input text field where questions can be entered. My AI’s strategy algorithm
will formulate questions that eliminate 50% of the suspects, which is the
optimal percentage. If my program can beat an opponent at least half of the
time, then I can deem it successful.

Introduction and Background

One of my favorite childhood pastimes during really long road trips was
Milton Bradley’s ”Guess Who?”, a simple two-player game. In it each player
has a board with pictures of twenty different people labeled with their names.
To begin, the opponents each choose a mystery person from the list of twenty.
Afterwards in subsequent turns, each player asks his opponent a yes-or-no
question about the Mystery Person, and he then uses the clues to narrow
down the twenty suspects into the answer. A player can only guess the
opponent’s mystery person once, and if he succeeds he wins the game.

My project is to create a computerized version of Guess Who complete
with an AI player. This involves two research areas: Game AI and Data
Mining. Computer game AIs can be divided into two categories: current and
classic. Current are complicated, animated games like RPG and simulation.
Classics games on the other hand are the simple, strategy games that have
been around before computers, like Poker, Hearts, Twenty Questions, Oth-
ello, Go, etc. Guess Who is one of the few classic game AIs that has not
been done. Thus my project is original and will require new algorithms to
accommodate the game’s unique features. Features like interpreting typed
questions and specialized file reading will prove useful for future computer
games. Since my product has great entertainment worth, it will be valued
by programmers and non-programmers alike.

2



Data mining is the analysis of data and the use of software techniques
for finding patterns and regularities in sets of data. My AI’s strategy algo-
rithm will formulate questions that eliminate 50% of the suspects, which is
the optimal percentage. This type of critical thinking involves data mining
techniques that enable the agent to form conclusions after analyzing input
data. If my automated player can defeat its opponent at least half of the
time, then I deem it successful.

Data mining, also known as knowledge-discovery in databases (KDD),
uses computational techniques like statistics and pattern recognition. Al-
though it is usually used in relation to analysis of data, data mining, like
artificial intelligence, is an umbrella term and is used with varied mean-
ing in a wide range of contexts. Its official definition is the ”nontrivial ex-
traction of implicit, previously unknown, and potentially useful information
from data.” This encompasses a number of technical approaches, such as
clustering, data summarization, learning classification rules, finding depen-
dency networks, analyzing changes, and detecting anomalies. My project
however implements an elementary form of KDD; one that does not require
complicated equations or extremely sophisticated search algorithms. Devel-
oping data mining software often involves corporate funding in the millions
and teams of programmers working in cooperation with project deadlines of
years. Because I work solo and only have the length of a year, my project
can at best produce only a crude but effective data mining function.

Data mining has many practical applications in the fields of science and
mathematics and especially in the business world. Retail companies make
a large use of KDD so that they can identify patterns among customer
purchases and thereby reorient their marketing strategy. Developed in the
1960’s, data mining really gained ground in the 90’s but is still a relatively
new field. New purposes are being discovered every year as more sophisti-
cated algorithms applying those principles are programmed. I hope to make
a minor contribution by applying it to turn-based computer games, which
according to my research has been largely undone.

Research on game structures was limited because most games’ code was
close sourced. Thus I had to largely develop the two player version on my
own from scratch. My game format is largely inspired by Battleship, which
I programmed during my summer computer science class. I utilized several
matrices to store the suspects’ images and attributes, which the user can
access via a grid of buttons. Also in common is that they are both turn-

3



based games where the player tries to locate his opponent’s secret target.
Privacy must be maintained and only one player can look at the screen at a
time.

The guessing game closest in functionality to Guess Who would be Twenty
Questions. Like GW, 20Q is a two-player, turn based guessing game that
uses probability and deduction. However the AI agent functions differently.
20Q’s AI involves a machine learning technique called the expert system.
During a game, the AI maintains a list of questions and as it iterates that
list, it eliminates possible suspects based on the user’s responses. After each
game, the AI learns from its mistakes and expands its knowledge database.
However, my game AI will actually formulate questions instead of merely re-
gurgitating them. I hope to develop a data mining techniquethat searches for
a shared pattern among the suspects and then generates a yes-or-no question,
that no matter how the user answers will eliminate half of the list.

Procedure

I decided to code my game in Java because of my substantial experience with
it and the language’s conveniently built-in GUI. My game is very low budget
and the only resources I needed were a java compiler and internet access.
This research paper was written in LaTex, and the poster and PowerPoint
presentation was created using OpenOffice on Linux machines.

My project consists of four files. To store the suspects I wrote a spe-
cial Person class whose fields were physical attributes. The object has a
constructor, modifying methods, retrieval methods, and an equals method.
GIPanel.java is the main file, and it comprises of the two-player game in-
terface. An extended one-player version is AIPanel.java, which in addition
contains the AI opponent. Both of these files are saved in JPanel form, which
Driver.java then loads up and runs.

GIPanel.java, which contains the bulk of my code, is organized in an
evenly-allocated fashion. The code is divided into around a dozen small
methods of comparably equal size, which made it easier to debug. The one
exception is the constructor, which requires no input and sets up the board.
All important variables are declared globally so that the methods will not
require numerous arguments.

My project can be divided into three iterations, each of which required

4



one school year quarter. The fourth quarter was spent on completing this
research paper and preparing a poster and PowerPoint presentation. In the
first quarter I concentrated mostly on research and organization and did
very little coding. I studied the structures of similar computer games and
existing data mining techniques to design my program. I also researched
GUI methods to develop the game interface. I decided to mold my game’s
structure after Battleship and its functionality after Twenty Questions. Most
of my work during this time was mentioned in Introduction and Background.

Phase 1: Game Structure and Logistics

In this iteration I developed the actual game infrastructure and made a func-
tional two player version. There were some delays achieving this, as this
undertaking was much more intricate than I had planned. Defining the Ac-
tionListeners and ButtonHandlers and setting the labels required only some
background reading. Setting up the scoring system, matrices, and turn-based
apparatus needed just thoughtful time and patience.

The most complicated task of this phase was coding the input text field.
This alone can constitute its own research project and required careful plan-
ning and persistent effort. In theory the user should be able to enter a really
complicated question that the game mechanism then interprets and reacts
accordingly to. However realizing the immense complexity of such an algo-
rithm, I more realistically toned down my expectations to a maximum of two
traits, with some variability by the addition of ”and,” ”or,” and ”not.” All
questions must be phrased precisely using a special jargon for the attributes.
The program reads this as a stack and if there is an error notifies the player.

Another tedious task was creating the twenty suspects. I largely copied
the original game’s design and infringed on Milton Bradley’s copyright. I
scanned the characters’ pictures from the actual game board and used Mi-
crosoft Paint for formatting. Using the special jargon mentioned earlier,
I coded the suspects attributes into a text document, separating each trait
with a comma. When running, my program reads the txt file, deconstructing
each line into nine traits, which is then entered as arguments into Person’s
constructor to create a unique Person object. The nine traits are nose size,
gender, shirt color, eye color, hair color, glasses, hat, beard, and baldness.
The Person objects are stored in the people matrix, which is continuously re-
ferred to during game play when questions are entered or a suspect is chosen.

5



Phase 2: AI Player Research and Development

The most innovative and difficult part of my project was developing the AI
player. Because Phase 1 ran overtime and encompassed two quarters, I was
forced to quickly assemble the AI agent. However I did not have time to
integrate it into my Game Interface, so users will not be able to play against
it firsthand. I designed my algorithm mainly through trial and error. After
reading up on the theory behind data mining, I was able to comprise my own
coarse interpretation. Using a depth-first search, the AI iterates through the
possible suspects and formulates a question that satisfies the set constraints.
To test whether my algorithm works, I had it analyze a game board state,
to which it responded with its question. I then calculated what percentage
of suspects was eliminated by that question.

As a control I developed an AI agent that makes its decisions using a ran-
dom number generator. Choosing a mystery person and formulating ques-
tions are all decided on a random basis. Needless to say this AI agent was
ineffectual. Its inability to ”think” made its strategy arbitrary and eas-
ily beatable. However this primitive prototype did accomplish its purpose,
which was to serve as a basis of comparison against my ”thinking” AI. The
success rates of my AI and the random AI are compared in Results and
Conclusions.

In-depth Explanation of Game Structure and

Functionality

The goal of Guess Who is to narrow down a group of 20 suspects through
yes-and-no question asking to identify the mystery person. Each suspect is
of the Person class, which means s/he has a name, picture, and physical
attributes. Based on the pictures, the player can enter a question about the
mystery person’s physical attributes. The user can interact with the game
via buttons and a text field. I divided my game interface into three panels.

The top panel’s purpose is to provide information. It consists of a label
and a row of attribute buttons. The label displays the opponent’s question
from the previous turn and how many suspects s/he has left. The user clicks
on the buttons to formulate a syntactically-correct question.

The middle panel consists of a 5x4 grid of buttons. Each button has a

6



picture of a suspect. The player clicks on the grid in the beginning of the
game to choose his mystery person, and again at the end of the game to guess
his opponent’s. Corresponding to the grid are several 5x4 matrices. Each
suspect has a unique 2D coordinate, which links the grid and the matrices.
For example coordinate [1,4] on the grid is the button through which sus-
pect Susan can be selected. Coordinate [1,4] on the Person matrix contains
Susan’s Person object...coordinate [1,4] on the ImageIcon matrix contains Su-
san’s picture...etc. There are two additional integer matrices, memory1 and
memory2. Memory1 keeps track of which suspects player1 has eliminated,
and memory2 does likewise for player2. Value 0 is the default, 1 indicates
eliminated, and 2 identifies mystery person status. The grid and the matrices
are all created at the start of the game based on input from file suspects.txt,
where each suspect’s unique attributes are stored.

The bottom panel consists of an input text field and three buttons. The
text field states the turn number and which player’s turn it currently is. In
the beginning of the game the user enters his name into the field. For the rest
of the game the user enters his question. Afterwards the user clicks the Done
button. If the question is valid, the appropriate suspects are eliminated which
is illustrated by the corresponding buttons being disabled. The screen then
turns yellow and informs the next player that it’s his turn. This transition
screen is a vital feature since it protects each player’s privacy from the other.
The next player then clicks the Ready button to indicate his readiness to
begin his turn. The game continues like this until one player has identified
his opponent’s mystery person. To reset the game, a player clicks the third
button, the Reset button, which activates the setBoard function.

Natural Language Processing

Although I did not plan so, my project involves elements of Natural Language
Processing. The nature of Guess Who is that the user enters questions, which
my program then has to break down and interpret. To achieve such a task I
wrote a very primitive natural language processor. The user can only enter
up to five words into the input text field. This includes a maximum of two
traits and one conjunction connecting them. To prevent any input typos, I
created a panel of buttons that the user presses to formulate his question.
The syntax of the input must be precise, and I added a throw exception clause

7



to catch any errors. If the format of the question is not exactly correct, the
program will not accept it and asks the user to rewrite his query.

Supposing the question is correctly written, my parse function then breaks
it down and converts the String into an array of words. The interpret function
then does the rest of the work. Using a switch statement the method is
divided into three paths: whether there is an ”and,” ”or,” or no conjunction
at all. The absence of a conjunction means that the user was asking about
only one trait. The process function is then called, which iterates through
the list of suspects, identifies those that don’t fit, and makes the according
changes to the memory matrix. The addition of an ”and” or ”or,” only
makes the task a bit more complicated. It can be inferred by the presence
of a conjunction that the user is asking about two traits. The questions is
the broken down into two parts, the substring before the conjunction and the
substring after, and each piece is entered into the process function separately.
When iterating through the list of suspects, process checks if both traits are
satisfied, and based on the Boolean response modifies the memory matrix.
Any error during this very complex algorithm alerts the throw-exception-
catch statement, which promptly rejects the input and asks the user to re-
enter it.

Artificial Intelligent Agent

I have been an avid player of Guess Who for at least four years. The beauty
of the game is its infiniteness of possibilities. I have never seen the exact
same game play duplicated twice. In the real world, questions can be as long
and complicated as desired. However constrained to the still primitive reality
of today’s computers, there are limitations on the players ability to compose
creative queries. Still this is only a minor hindrance since most players can
compute only up to two or three traits. Usually the safest strategy is to ask
questions that for yes or no will eliminate half of the suspects. Some bold
individuals dare a move whose breakdown lets say is if ”yes,” eliminate 70%
of the suspects, and ”no,” eliminate 30%. This is unnecessarily dangerous,
since if ”no” is the response, the player will suffer a major setback. The
proper strategy is to make steady gains, every turn eliminating the volume
of suspects by a factor of two, and wait for the opponent to make a sloppy
mistake and fall behind. It is only appropriate to gamble a risky, uneven

8



question when the opponent has much smaller volume of suspects than you
do.

The AI strategy algorithm is simple. Using a depth first search, iterate
through the list of traits. If any trait is shared by 45%-55% of the current
roster of suspects, that trait is formed into a question. If not, the AI moves
on to plan B. The percentage each trait eliminates is recorded in an array.
On a systematic basis two traits are chosen, and every possible combination
is run through it. These include adding a conjunction or prefixing a ”not.”
Each scenario is checked on whether the condition is met. For ”and,” the
previously-calculated percentages of both traits are multiplied together. For
”or,” they are added up. Adding a ”not” subtracts the traits percentage
from 100. During all of this, any question whose range falls between 35%-
65% is stored onto an array in sorted order. In the event that no question
matches the original description, the next best question is popped out and
used. Lastly if all else fails, a random question will be selected. In the event
that opponent has 2/3 or less of the suspects of the AI, in order catch up the
percentage constraint will be temporarily expanded to 25%-75% to allow a
possible catch up.

When choosing a mystery person, some suspects clearly have an advan-
tage over others. The same principle of asking questions applies to choosing
a mystery person. Select a person whose has the most traits the most in
common with the most people. For example, dont choose a black character
because there is only one black person in the game. All an opponent needs
to ask is ”Is your mystery person black?” and its over. The best person
to choose is a white bald male wearing a blue shirt. It takes a minimum
of five turns to arrive at the answer. Using this principle, each character is
given a weight depending on how common its traits are. The AI will still
choose randomly to remove any element of predictability, but the agent will
be inclined to choose smartly.

Results and Conclusion

Truth be told, my endeavor has been less of a research project than a de-
velopment project. Instead of experimenting I have spent most of my time
creating. From the beginning I already had an idea of what the final result
would be and the only real experiment was whether my project would work or

9



not. Thus as a result I don’t have much to data to show. My program is not
designed to produce output for analysis but to create a workable, usable fi-
nal product. Because I was not able to complete an interacting AIPanel.java,
the users could not test my AI, which meant I couldn’t compile data on the
game-playing prowess of my AI against real world human opponents. How-
ever I obtained the next best result, which was comparing my AI’s question
forming ability to that of a random AI. As mentioned in Procedures: Phase
2, I measured their performances by how close their elimination rate was to
50%, which is the optimal percentage. After ten trial runs, my data mining
AI formulated questions that on average eliminated 34% of possible suspects,
while the control random AI averaged a mere 29%. I am quite pleased with
this result, which provides evidence that my AI is making decisions on a log-
ical basis. Though I was never able to have my AI compete against human
players, I am sure it would have yielded them no easy victory.

Though my project has not turned out as expected, I still deem it a
success. I started the school year with no prior experience with Linux and
HTML and a shaky at best knowledge of Java GUI. Much of the first quarter
was spent struggling to learn basic technical skills. Most of the benefit that
has come from this endeavor is not derived from the end product but from
the process of developing it. This has been my biggest and most complicated
programming project ever, and I learned to integrate multiple intricate files
and coordinate complex functions. The scoring system, text box, button grid,
file reading, and suspect matrix all work in cohesion to form one operational
unit. Every button activates several methods, which return values to each
other and produces a net change in the game interface. The sheer magnitude
of my projects complexity left plenty of room for bugs, not all of which I
was able to fix. Most of my project’s components are working and I can
demonstrate them, but petty errors in two or three have prevented me from
being able to exhibit a sleek finished product. However all is not in vain; the
most valuable lesson I learned is how to organize and manage a large project.
While this year was not as successful as I had desired, it has provided a
learning experience I can apply in the future.

Since the project is not complete there is much area for future effort. An
obvious addition would be integrating the AI into the game interface to create
a snazzy one-player Guess Who game. Another would be applying more so-
phisticated data mining algorithms that can devise more thorough questions
in much less time. My program lacked many basic features of data mining,

10



like classification, which is grouping data together according to similarities or
classes, and probabilistic approach, utilizing graphical representation models
to compare different knowledge representations. My program also used the
most inefficient search algorithm, selection sort, whose run time is O(N2).
More efficient techniques like heap sort, merge sort, or quick sort would have
decreased the run time, though negligibly, since the run time is already quite
small.

I would also like to expand the text box’s capabilities. Natural language
processing was an unexpected yet intriguing area of my project, and if I
could do everything over again I would have focused my project solely on
that topic. I wish I had more time to develop more sophisticated parse and
interpret functions that could take in questions of any size or complexity, like
a calculator does. This would require a search method that could navigate
its way through a maze of parenthesis and prioritize which segment of the
question to process first. I have no clue how to accomplish this, but I know
its doable since a regular TI accept really long equations. This is a topic I
would definitely like to study further, and will be the subject matter of any
future research projects I pursue next year at the university.

I have several recommendations on how to improve the Computer Sys-
tems technology laboratory so that future generations will find it a more
useful and enjoyable experience. First would be encouraging group projects.
Group projects have the potential to achieve much more significant progress
because more heads are better than one. Plus students will get first hand
experience in collaborating to write one large program, something that TJ
doesn’t prepare students enough for but is how all software is written in the
real world. Also, working in groups cuts down on work load and repetition,
making the class more fun and effective. Another suggestion is to give less
blackboard assignments. They create an unnecessary burden of busywork
for the students and detract time from actual coding. A more helpful way
to check on students is for the teacher to meet with each student weekly,
discussing that individual’s progress and making sure that s/he is on task.
That way the student will be clear on what s/he is working on and with
constant one-on-one motivation will be less likely to succumb to laziness.
Despite these difficulties, my overall experience this year in the Comp Sys
tech lab has been both pleasant and fruitful.

11



References

For additional information, visit my website www.tjhsst.edu/ jpan

20Q <http://www.oozinggoo.com/20q>

AI FAQ <http://www.guessmaster.com/aifaq.asp>

Applications of Data Mining <http://www.the-data-mine.com/bin/view/Misc/Applications
OfDataMining>

”Classic Games” AI <http://www.gameai.com/clagames.html>

Data Mining and Discovery <http://www.aaai.org/AITopics/html/mining.html>

Data Mining Techniques <http://www.statsoft.com/textbook/stdatmin.html>

Machine Learning in Games <http://satirist.org/learn-game>

Statistical Data Mining Tutorial <http://www-2.cs.cmu.edu/ awm/tutorials>

What is Data Mining? <http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technol
ogies/palace/datamining.htm>

What Is Data Mining and What Are Its Uses? <http://www.darwinmag.com/read/100103/
mining.html>

12


