
Kernel Debugging User-Space API Library (KDUAL)
John Livingston

Computer Systems Laboratory
Thomas Jefferson High School for Science and Technology

January 21, 2005

Abstract

The purpose of this project is to create an implementation of much of the kernel
API that functions in user space, the normal environment that processes run in. The issue
with testing kernel code is that the live kernel runs in kernel space, a separate area that
deals with hardware interaction and management of all the other processes. Kernel space
debuggers are unreliable and very limited in scope; a kernel failure can hardly dump
useful error information because there's no operating system left to write that information
to disk.

Kernel development is quite likely the most important active project in the Linux
community. Any aids to the development process would be appreciated by the entire
kernel development team, allowing them to do their work faster and pass changes along
to the end user quicker. This program will make a direct contribution to kernel
developers, but an indirect contribution to every future user of Linux.

Introduction and Background

The Linux kernel is arguably the most complex piece of software ever crafted. It
must be held to the most stringent standards of performance, as any malfunction, or
worse, security flaw, could be potentially fatal for a critical application. However,
because of the nature of the kernel and its close interaction with hardware, it's extremely
difficult to debug kernel code. The goal of this project is to create a C library that
provides the kernel API, but operates in ordinary user space, without actual interaction
with the underlying system. Kernel code currently being tested can then be compiled
against this library for testing without the risks and confusion of testing it on a live
system.

Process

The design of this API has an extremely simple development process: Research,
code, debug. Sub-tasks are somewhat difficult to define, as the library cannot do very
much of use until complete. However, the rapidly growing source code, along with small
demonstrations of sections of the library, is sufficient for progress reporting purposes.
Development thus far has simple, no special tools have been needed beyond the vim
editor, the GNU C compiler and linker, and a very large amount of work time. Testing of
the library with simple functions will be trivial, it is the eventual goal of this project
construct a small patch to the kernel using this library both as a demonstration of the
library's effectiveness and to solve an existing problem. This patch would allow seamless
use of the Andrew File System (AFS) with the 2.6.x kernel, greatly benefiting the lab's
workstations by allowing an immediate migration to 2.6, which has large improvements.

On a more detailed level, I have been implementing sections of the Linux VFS, as
well as math processing. VFS is necessary to handle “file interaction” in the virtual
kernel, while most of the mathematical work has been to optimize basic functions (add,
subtract, compare, etc.) using x86 assembly. Because this library attempts to simulate a
program that uses hardware directly for computation, its own internal simulation of that
computation must be as fast as possible. It will never reach anywhere near the speed of
the actual kernel, but the speed difference between the original C syntax for addition and
its equivalent in inline assembly is a tenfold increase.

These two sections of the kernel library will be my primary contribution to this
project. Current code for the two spans several thousand lines. The majority of the
codebase is written; however, minor changes, fixes, and improvements will still require
significant effort. This project's success is dependent on efficiency as much as simple
functionality.

References

http://www.kernel.org/
The Linux Kernel Archives.

http://www.debian.org/
The Debian distribution of Linux, the best one, not to start a flame war or anything.

http://lkml.org
The archive of the Linux Kernel Mailing List, the primary method of communication for
kernel developers

http://www.openafs.org
An open source implementation of the Andrew File System.

