

Car Test AI

Artificial intelligence car simulation based on a pre-generated map

Aaron Liu

Dan Neitzke

Xiaofan Yang

Computer Systems Research Lab, TJHSST

2005

Abstract

	The purpose of this research was to design an AI (Artifical Intelligence) for a car running on a 2D raster image map with obstacles. The car would then run on the map and drive on the roads correctly and avoid obstacles. The research was split into three parts: the control program, the AI, and the graphics program. The end result was two programs: a data program that included the control and the AI, and a graphics program which read in the output from the data program and displayed it in 3D. The data program can read in any properly formatted map to run the AI on, and the graphics program can display car position and rotation on the map with enabled camera panning, rotating, and zooming.

Introduction

	With the abundance of satellite imagery these days, especially imagery of roads, it would only be proper to take things to the next level and design an AI to run cars alone on such roads. Although our AI does not achieve that, we are the first step in such process. Our AI was designed and planned to read in a raster image map and run correctly on the road and avoid obstacles. The car AI itself would know the image of the whole map and know the position of the obstacles immediately near it. In the end, we succeeded in making such a program.

	Our program runs a 3D car around a 2D map displayed in 3D. Depending on the control program and AI used, the car will either run once on a set path or run infinitely on a random path. The camera can be rotated, panned and zoomed in and out with the mouse, with the car running. We can also slow down the time and other factors in the code.

	Our program does not go beyond that, however. Our research is entirely a simulation, with simulated maps and car. However, our research did bring up many issues and address many obstacles that would likewise come up when implementing such a project in the real world. Many things such as: What kind of map will the car use, vector or raster? How far will the car be able to see? What kind of objects will the car need to differentiate between? How will car AI be structured? and lastly: How will car AI translate into actions and how will data be moved?

	Our program also gave us research and experience with OpenGL and general AI. Many facets of Computer Science had to be consulted in order to bring such a diverse project together. In addition to OpenGL, we have learned about pipes, SDL (Simple Directmedia Layer, used as a wrapper for OpenGL), human-computer interaction, and other things.

Background

	Our lab is located in Thomas Jefferson High School for Science and Technology in Alexandria, Virginia. Our lab is the Computer Systems Lab, a lab entirely comprised of Linux machines. We are currently all seniors, having spent four years in our high school. We all have a background in C++, and have been programming in it for four years. We all have had varying experience with OpenGL.

	OpenGL is a free graphics library that can be acquired online, and is usually distributed on all modern PCs. Our lab is equipped with OpenGL on all computers. OpenGL is usually used for 3D applications. It is easy to use: it accepts drawing commands based on points, lines, and polygons.

	As a wrapper over OpenGL, we used SDL. SDL was also used to gather keyboard and mouse input, as well as timing purposes. SDL is also a free graphics library that works on most platforms. Our lab is also equipped with SDL. Although SDL by itself only works with 2D graphics, it can be incorporated with OpenGL to allow 3D graphics.

	

Research Theory and Design: Graphics

	The original intention of the graphics portion of the program was simpy to have a car running around on a 3D map. This left a lot of unanswered questions, such as, will the camera follow the car? will we use elevation? and how will things be represented in the 3D world?

	Aaron was responsible for the entirety of the graphics program. Due to his experience in SDL and OpenGL programming and general hobby game programming, he was ideal for this position.

	The graphics program was coded and begun under the filename “cartest.cpp”, by which it will be referred to throughout this section. It was coded in c++ and the command “g++ cartest.cpp -o cartest” was used to compile it, which used the g++ compiler. The entirety of the code of cartest is provided in the appendix as reference.

	The actual program begins with a simple self-wrote library for games programming, called “asdlogl.h”. It stands for “Aaron's SDL and OpenGL library”. It sets up SDL graphics and timing with OpenGL for easy use. It is similar to Glut (a library for OpenGL ease of use), in which pointers to functions are sent to the main loop function located in the library, and the program is run from there. In asdlogl.h, the pointers to the process and display functions are sent to the main loop, and run from there. The main loop runs in this fashion: wait for set increment of time, update keyboard/mouse input, run processing function, run display function. Asdlogl.h uses SDL to gather input from the keyboard and mouse. It also uses SDL for timing, which is critical for maintaining a constant frames per second (fps). The entirety of asdlogl.h is included in the appendix for reference.

	Once asdlogl.h was properly implemented and run, work was begun on camera controls. It was decided that the camera would mimic those used in 3D modeling programs for ease of visibility; thus there would be three functions of the camera, rotating, zooming, and panning. How this was achieved is explained below.

	The camera has three variables associated with it. A horizontal degree, which is the degree of rotation of the camera on the xy, or horizontal axis. The next variable is the vertical degree, which is the degree of rotation on the z axis. This vertical plane is always perpendicular to the xy axis and is rotated in conjunction with the horizontal degree. The third variable is a distance, which is a simple number on how far the camera is away from the target. With the three variables combined we have a simple 3D vector.

	Zooming was simply achieved by increasing or decreasing the distance variable. This can be done with the left and right mouse buttons in cartest.

	Rotation was a little more difficult. Rotation modified the horizontal and vertical degrees by how much the mouse changed in x and y cooridinates, respectively. A variable dx was calculated on how much the mouse moved left or right. A variable dy was calculated on how much the mouse moved up or down. Then dx was added to the horizontal degree and dy was added to the vertical degree. Thus we have rotation, which can be done in cartest by holding down the space bar and moving the mouse.

	Lastly, we have panning, which is a difficult calculation. Panning is moving the camera side to side or up or down. The object is restricted to the plane parallel to the view of the computer screen. So in order to pan in any direction, the x, y, and z coordinate vectors must be calculated to fit this. In order to spare the reader from complex trigonometry, a summary will be given. Basically, two perpendicular triangles must be found: the triangle from the camera to the target, with the distance variable as the hypotenuse, and the triangle from the right angle of the first triangle and the target, with the distance from the right angle to the target as the hypotenuse. The two triangle form a box, and height, width and length of the box, rotated 90 degrees, gives the change in x,y, and z coordinates of the target, thus creating the illusion that the camera pans in the other direction. For specific calculations, refer to the code. Panning on the z axis was disabled for ease of use (intended movement does not match actual movement when z axis is enabled). To pan in cartest, hold down the middle mouse button and move the mouse.

	A grid was drawn in cartest, with the x, y, and z axis colored red, blue, and green respectively, and gray lines and set increments. This was used as a reference for all other objects in the scene.

	Cartest runs at 20 frames per second, which is slow enough to interperet the movements of the car while being fast enough to make the cars motion appear to be smooth.

	The car itself was hand drawn, but the normals were added through a program. The car was drawn originally has a hard coded function, but for further expansion, a file format was designed form 3D objects to be interpreted by cartest. The file format is in plain text. The file format is described as follows: In OpenGL, polygons are drawn by initiating a function, then sending the vertices of the polygon. The file format had a similar approach. A polygon is begun by the letter 'p', then the letter 'v' is followed by three floating point numbers is each vertex. Unlike in OpenGL code, there is no need to end the polygon because the polygon is ended when the next polygon begins. Problems resulting from the first and last polygons are resolved by beginning to draw with an unfinished line, and ending the last polygon within the code.

	Normals are vectors used for lighting in OpenGL. Normals are a vector on each polygon, perpendicular the polygon. The angle the the normal faces away from the angle of the light is how intense the light is on that polygon, naturally. A separate program called addnorms.cpp was made to read in an object file and add normals to it. Again, the entirety of the code of addnorms.cpp is included for reference.

	The next part was reading in information from the control program. Originally, this was to be done with pipes: cartest would be initiated, then it would execute the control program within the code, and then it would gather the output. This however proved to be complicated since there was no simple pipe function. We needed to fork the program, and then replace the program's process with the process of the control program. In addition, it was intended that there would be a two way pipe, for two way communication. A one way pipe was established and run, but a simple solution was soon found the problem. Adding a '|' between the two commands for running a program in the Linux terminal automatically created a one way pipe from the first program to the second. This was much simpler and much more modular, since we had to previously change the name of the control program within the code of cartest and recompile several times. Also, in the end we did not need a second pipe because all the unused output from the control program was stored in a buffer. Thus we abandoned the pipe approach. However the reader will see the commented out remnants of the pipe functions within the cartest code. Thus cartest is run by the command “./<control program> | ./cartest”, where the control program is the specific control program used depending on the behavior of the car.

	The data is sent in a standard fashion, which was also self developed. First, during initiation, the control program sends the map height and width, and the tile data of the map. Then, every iteration it sends the position of every object in the scene by the format “object: x y” where object is the name of the object and x and y are integers. For the car only, a third variable is sent, which is the car's angle.

	

	The last part of cartest is the displaying of the map and car. It was decided that each tile or pixel on the map would be three meters, or half the length of the car. In real life terms this means that the picture of the road will have to have a resolution of three meters.

	On the map there were three types of tiles. Green was for grass, gray was for road, and orange was for obstacles. Thus the car stayed off the grass, stayed on the road, and avoided obstacles. The map itself was centered on the origin of the xy axis, without any spaces between the tiles. The individual tiles however can be differentiated by the grid lines. The grid lines do not mark the boundaries of the tiles; instead, each grid line intersection marks the center of a tile.

	Finally the car is displayed on the map and colored blue. The map is lighted to increase visibility of car and ability to distinguish is position.

	In whole, cartest took about two quarters to complete and integrate with the test programs. It runs a 640 by 480 window which displays the car on the map, and accepts user input to manipulate the camera. It can be closed by hitting the 'x' in the top right corner or hitting the escape key.

Research Theory and Design: Control Program

	The design and layout for our project was done on a 2-D plane, entirely within the terminal window. The first working program created a linear road, with a few obstacles in it. The moving object, the car, was then supposed to traverse the road, while dodging the obstacles. This was easy enough with a straight road, but more difficult with obstacles on turns and curves.

	The obstacles were taken out in the second model to make other parts of the program simpler. This part of programming basically focused on printing out an accurate map, and important variables in a readable form needed for the final display program. After this, a simple algorithm was created for the car to travel through any given map. The algorithm did not provide an end destination. Rather, it allowed the program to run forever. If the car ever reached a diverging road, it would pick a random direction to turn, unless one of the choices was to go straight on. In that case, it will just continue moving forward.

	The car itself was initially given 4 variables- a row and column position and a row and column velocity. The position variables are simply straight forward coordinates from the environment matrix. The velocity values indicate matrix index movement per display cycle. A positive row velocity makes the car move south, while a negative row velocity makes the car move north. A positive column velocity makes the car move east, while a negative row velocity makes the car move west. For example, a row velocity of 1 and a column velocity of -1 would make the car move southwest about 1.41 matrix cells per display cycle. However, display cells are only in integers, so this is rounded down to 1 cell per cycle.

	After these basics were done, other necessary, but not as important aspects of car simulation were added to the existing program. The first thing that was added was mobile all-terrain obstacles, meant to represent wild animals, dust balls, and little kids. In order to calculate collisions carefully, a parallel world had to be created. During this step, the previous world used was split into two new worlds- one for the environment, and one for obstacles. The two environments were then combined, along with the coordinates of the car, into a third world, where calculations could be performed.

	Generating and spawning moving obstacles was easy enough, but getting the car to react to them was slightly more difficult. The process used for this was done by extracting portions of maps from the entire system, and deciding where the car should move from there. Thus far, the miniature map is a simple 3 by 3 map directly in front of the car. The view is always straight on from the car, so that turning algorithms will be easier to code.

This view is supposed to be representative of a person's real life field of vision in front of the car.

	With these previously mentioned things complete, the basic layout was ready to be read into the display program, to be shown in a 3-D perception. However, a 3-D view requires certain aspects unaccounted for in the previous text-based 2-D view. One of these is turning angles. The 3-D program would not look realistic if the car just shifted instead of turned. To fix this, an angle variable was added to the car, to determine the direction it was facing. The angles were based on polar plane except everything was shifted counterclockwise 90 degrees. Thus, a car moving directly north would have an angular value of 0, and a car moving southwest would have an angular value of 135 degrees.

	By this point, the program for layout and design was basically complete, so a second program was created to randomly generate maps that the car could travel on. This program displays a blank map, and creates a 3 by 3 block of road each time the user hits a button. Each successive hit would create another linked block of road, until the road ended, or until it ran into itself. At that point, the spawn location for the block would shift to a blank area, and create another road. The initial spawn location is always in the center, because that allows the maximum distance for a continuous road to be created without stopping.

Results, Discussion, Conclusion, Recommendations

	We were planning to analyze our results during fourth quarter. So far, we have our program working with little problem, but we have not fully implemented our initial purpose of simulating a car's reactions to certain impediments in a real world environment.

	Throughout the year, we've learned many things from this entire team process. An important lesson in working with others is collaboration. We couldn't have gotten as far was we had without communicating with one another.

End matter

	Very few references were used in our project because we worked with an area of Computer Science that wasn't very established. All the content based material we needed was done early into the first quarter. After that, most of the research involved looking up syntax, and figuring out specifics in coding. Most parts of our program couldn't be done by learning from other people's code. A big part of our program required critical thinking only available to the creativity of the human mind.

� SEITE *Arabisch �11�

