
TECHNIQUES OF ASYMMETRIC FILE
ENCRYPTION

Abstract
As more and more people are linking to the

Internet, threats to the security and privacy of
information continue to grow. To solve this
growing problem, encryption programs have been
created to protect privacy during a transfer of files
and to make sure that sensitive files will be
protected. My project is to create an asymmetric
file encryption program. This means that
encrypted files will need a pass-key to open that
will be different from the key used to encrypt.
This program could be applied practically to
protect files during transfers.

Background and Research
This area of research has been extensively researched in
the past. Even before the widespread use of the Internet,
file encryption had been developed for many years. At
the moment, there exists numerous programs capable of
encrypting files on a large scale. Some of these are
very efficient, able to not only encrypt, but also compress
files. There are many kinds of encryption. Two are
public-key encryption and private-key encryption. This
project will focus on private-key encryption methods.
There are also many different types of encryption methods,
including translation tables, data repositioning, and
word/byte rotation. I have not yet decided which method
to use. In the early stages of the project, I will use a
downloaded encryption algorithm in my program.
When the other aspects of the program are working, I will
write my own encryption algorithm. This way, I will
utilize and build
off of existing work in this area.

Computer Systems Research Alvin Li Class of 2005

Procedure and Development
Currently, I have completed the first version of my program. I have used a basic
RSA algorithm as the basis for my project. The theory behind RSA is simple, but the
implementation is difficult.

RSA was invented in 1977. It uses the fact that products of large primes are very
hard to factor to its full advantage. Lets say you have two large primes, p and q. The
public key would be the number p * q. This key is used to encrypt the message. The
private key, would be either p or q. It is near impossible to derive p and q from p * q
because factoring p * q is very difficult. If p* q is a 128 bits large, then you would
need to try dividing p * q by 2^64 numbers to find p or q. This is because you need
to try at most root n numbers to factor n. Naturally, trying to solve the cipher by
brute force would take practically forever. This is what makes RSA so strong, the
fact that it is pretty much unbreakable. With the private key p, you can decrypt the
original message. The operations below shows how this is done.
public key n = p * q
private key large primes p and q
Let e be a random encryption exponent that is less than n and has no factors in
common with (p - 1) or (q - 1)
Calculate the decryption exponent d which satisfies e * d mod (p - 1) * (q - 1) = 1
Then, the encryption function is E(m) = m ^ e mod n, for any message m
The decryption function is D(c) = c ^ d mod n, for any ciphertext c

This is the basic procedure for my RSA encryption program.

Results
Let me discuss the
results of my project.
The cryptext is very
random, with ASCII
values approximately
randomly distributed
throughout the
encrypted text. I came to
this conclusion by
running tests on the
encrypted data.
Also, the encrypted text
is completely
patternless, which is
another essential
component. Frequency
analysis is a form of
cryptoanalysis. Because
the frequency of some
characters in the English
language occur more
often than others (such
as the letter 'e' and 's'),

