
Techniques of Asymmetric File Encryption
Alvin Li

Thomas Jefferson High School

For Science and Technology

Computer Systems Lab

Abstract
As more and more people are linking to the Internet, threats to the security and

privacy of information continue to grow. To solve this growing problem, encryption

programs have been created to protect privacy during a transfer of files and to make sure

that sensitive files will be protected. My project is to create an asymmetric file encryption

program. This means that encrypted files will need a pass-key to open that will be

different from the key used to encrypt. This program could be applied practically to

protect files during transfers.

Introduction and Background

Over the summer, I read a book that explained the history of encryption. Since

before the times of Caesar and the Roman empire, encryption has been used to keep

secrets secret. In the modern world, file encryption is now used almost everywhere.

Whether you are transferring files, compressing files, or formatting databases, you must

use modern file encryption techniques. There is so much private information, such as

social security numbers, credit card numbers, bank-account information, or private

correspondence that all needs to be protected.

In order to fully understand my project, you must know a little about encryption

first. There are many categories of encryption, such as key encryption, block encryption,

and stream encryption. The one that I will focus on, since it is the category of my

algorithm, is key encryption. The basic concept behind key encryption is simple. The user

runs the algorithm on the desired file and the file becomes encrypted with the key. In

order to decrypt the file, the user must input the correct password, which translates to the

correct key. This method of encryption is very powerful because the algorithm is

dependent on the key, which is arbitrarily defined. Since each key is unique, each

encryption is unique as well. If we used a set, standard algorithm, as soon as a hacker

figured out the algorithm, he could break every code created by that algorithm. But, with

a good key encryption program, knowing the algorithm does not help. You must have the

correct key.

The ultimate goal of any key encryption program is to make the encrypted file

impossible to decode without the key. This will force the intruder to use the brute force

method, which is to try every single possible pass-key. This is highly difficult to do,

because even with a super computer, the number of permutations is so great, that it would

take years to finish. So, with a good key encryption program, you can create practically

unbreakable codes.

Key encryption algorithms are separated into two groups as well. There are public

key and symmetric key encryption programs. There are also two categories of keys,

asymmetric and symmetric keys. When using symmetric keys, the key used to encrypt is

the same key used to decrypt the file. So there is only one key. Symmetric key encryption

uses this form of key. The public key encryption uses different keys to encrypt and

decrypt. The key used to encrypt is called the public key. The private key, provided by the

user or the computer the file is being transfered to, is used to encrypt the public key.

When decrypting, the private key accesses the public key, which decrypts the file. The

keys are said to be asymmetric.

File encryption is commercially used in almost every widely used application.

Research into this subject is every extensive. Programmers are constantly inventing

stronger, faster, and more effective algorithms. Some of these are very efficient, able to

not only encrypt, but also compress files. The military also has a large interest in this

field. Although their algorithms are generally much safer, they are slower and harder to

implement.

Some of the popular encryption algorithms I have studied include RSA, DES, and

AES. The RSA is a classic key encryption program created in 1977. It uses very large

prime numbers and factoring as its public and private key. Since factoring multiples of

large primes is near impossible, this method is very safe and easy to use. It is the most

popular form of key encryption used today. The AES or Advanced Encryption Standard,

also known as Rijndael, is considered the strongest algorithm to date. So far, no one has

found a way to easily crack it.

The main task of my project is to create a encryption program. Specifically, the

program that will take a file as an input, and create an encrypted copy of the file in an

executable form. When the encrypted file is run, there will be an input asking for a pass-

key. If the user inputs the correct pass-key, the file will self-decrypted and transform back

to the original file. My program will use a block cipher method of encryption. This means

that data will be encrypted in 16, 32, or 128 bit blocks. This method is faster than taking

every bit, as in a stream cipher. I expect to get a version of this program running and put

my finished product on the Internet for download.

In writing the program, I will use aspects of some popular existing algorithms. By

using a combination of methods, I hope to create an algorithm that is stronger than any.

Procedure and Development

Stage 1: Planning

I plan to work on this project in a series of iterations. Each iteration will build off

the previous one by adding a function or revising an algorithm. After each iteration is

complete, I will thoroughly test the program to see if everything is working. This way, I

can easily pinpoint bugs in the program. There will be two goals for the final version of

the program. First, the program must be able to encrypt and decrypt a file. The decrypted

file must be an exact copy of the file before encryption. This will be easily determined by

examining both files. Second, the encrypted file must be very difficult to crack. This

could be determined by letting hackers try to decipher the code. If it is very difficult to

decode, then this goal will be achieved.

The only tool I will need for this project will be a computer. The program will be

written in C++. If the two criteria listed above are met, then the project can be considered

a success. I plan to post a free version of the program on my website for download. This

way, people can use the program to securely transfer files over the Internet without

interference from outside parties.

Stage 2: First Iteration

I have used a basic RSA algorithm as the basis for my project. The theory behind

RSA is simple, but the implementation is difficult.

RSA was invented in 1977. It uses the fact that products of large primes are very

hard to factor to its full advantage. Lets say you have two large primes, p and q. The

public key would be the number p * q. This key is used to encrypt the message. The

private key, would be either p or q. It is near impossible to derive p and q from p * q

because factoring p * q is very difficult. If p* q is a 128 bits large, then you would need to

try dividing p * q by 2^64 numbers to find p or q. This is because you need to try at most

root n numbers to factor n. Naturally, trying to solve the cipher by brute force would take

practically forever. This is what makes RSA so strong, the fact that it is pretty much

unbreakable. With the private key p, you can decrypt the original message. The operations

below shows how this is done.

public key n = p * q

private key large primes p and q

Let e be a random encryption exponent that is less than n and has no factors in common

with (p - 1) or (q - 1)

Calculate the decryption exponent d which satisfies e * d mod (p - 1) * (q - 1) = 1

Then, the encryption function is E(m) = m ^ e mod n, for any message m

The decryption function is D(c) = c ^ d mod n, for any ciphertext c

This is the basic procedure for my RSA encryption program.

While RSA is relatively simple to code, it is a very strong encryption method. The

most difficult problem I had to deal with so far is determining whether a number is a

prime or not. If the number is close to a prime, meaning it has two or three divisors, it

would not matter that much to the program. The only problem it would create would be in

the cryptoanalysis of the ciphertext. If there is more than two divisors of n, another pair of

divisors might be mistaken for the private key. This would probably just throw off the

hacker for a bit.

I have tested my program in a very simple way. The first standard of my testing

was to be able to convert cleartext to ciphertext and back with ease. After this was

achieved, I attempted to find clearly visible patterns within the ciphertext. I use

cryptoanalysis methods to locate patterns, but after much testing, I could not break the

code. The indicates that the code cannot be cracked using basic cryptoanalysis techniques.

The next step in my project development will be to create a more friendly interface. Right

now, since the program is text based, it cannot be easily accessed.

There were many obstacles to the development of my project. Many programming

errors and miscalculations occurred. As a result, progress was very slow. Just getting the

program to encrypt files was took a very long time.

The main problem that I still have not solved is decrypting the cryptext generated

by my RSA implementation. When the cryptext is run through the decryption program,

the resultant file is gibberish. This is a serious problem because without a working

decryption component to my program, it is unusable.

Results and Conclusion

Let me discuss the results of my project. As a result of numerous programming

complications, progress has been very slow. The final program is capable of generating

cryptext from cleartext. The cryptext is very random, with ASCII values approximately

randomly distributed throughout the encrypted text. I came to this conclusion by running

tests on the encrypted data.

Also, the encrypted text is completely patternless, which is another essential

component. Among the numerous ways that codes can be broken are frequency analysis

of characters, and finding patterns within the data. Frequency analysis is used to break

translation table ciphers. Because the frequency of some characters in the English

language occur more often than others (such as the letter 'e' and 's'), if each letter is

associated with only one other character, a cryptoanalyst can guess much of the

translation table. This makes the code pretty much worthless. Since the frequencies of the

ASCII values of the text generated by my program is are randomly distributed, the

method of cryptoanalysis cannot be used. Also, there are no visible patterns the would

give away the encryption method.

Due to a shortage of time, the decryption part of my program has not been

completed.

References

For more current, up-to-date information on my project, visit my website at

www.tjhsst.edu/~ali

The following are website URLs of sources I used in researching about file encryption:

www.mycrypto.net/encryption/crypto_algorithms.html

This is a good website for details about existing algorithms.

http://catalog.com/sft/encrypt.html

This site explains many forms of encryption and provides a guide to how to write

encryption programs.

http://www.howstuffworks.com/encryption.htm

A comprehensive guide to encryption from howstuffworks.

http://www.ssh.fi/support/cryptography/index.html

Another good website on encryption from the SSH people

