
Natural Language Processing: Using Machine

Translation in Creation of a German-English

Translator

Jason Ji

May 19, 2005

1



Abstract

The field of machine translation - using computers to provide trans-

lations between human languages - has been around for decades. And

the dream of an ideal machine providing a perfect translation be-

tween languages has been around still longer. This project attempts

to take the beginning steps towards that goal, creating a translator

program that operates within an extremely limited scope to translate

between English and German. There are several different strategies

to machine translation, and this project will look into them - but the

strategy taken to this project will be the researcher’s own, with the

general guideline of ”thinking as a human.” For if humans can trans-

late between language, there must be something to how we do it, and

hopefully that something - that thought process, hopefully - can be

transferred to the machine and provide quality translations.

1 Background

There are several methods of varying difficulty and success to machine trans-

lation. The best method to use depends on what sort of system is being

created. A bilingual system translates between one pair of languages; a

multilingual system translates between more than two systems.

The easiest translation method to code, yet probably least successful, is

known as the direct approach. The direct approach does what it sounds like

2



it does - takes the input language (known as the ”source language”), performs

morphological analysis - whereby words are broken down and analyzed for

things such as prefixes and past tense endings, performs a bilingual dictionary

look-up to determine the words’ meanings in the target language, performs a

local reordering to fit the grammar structure of the target language, and pro-

duces the target language output. The problem with this approach is that it

is essentially a word-for-word translation with some reordering, resulting of-

ten in mistranslations and incorrect grammar structures. Furthermore, when

creating a multilingual system, the direct approach would require several dif-

ferent translation algorithms - one or two for each language pair.

The indirect approach involves some sort of intermediate representation

of the source language before translating into the target language. In this

way, linguistic analysis of the source language can be performed on the in-

termediate representation. The two main variants of the indirect approach

are interlingua and transfer. The interlingua approach involves translat-

ing the source language into an intermediate language or representation that

is not language dependent, and then translating into the target language

without ”looking back” at the source. Translating to the intermediary also

enables semantic analysis, as the source language input can be more carefully

to detect idioms, etc, which can be stored in the intermediary and then ap-

propriately used to translate into the target language. The transfer method

is similar, except that the transfer is language dependent - that is to say, the

French-English intermediary transfer would be different from the English-

3



German transfer. An interlingua intermediary can be used for multilingual

systems.

2 Theory

Humans fluent in two or more languages are at the moment better translators

than the best machine translators in the world. Indeed, a person with three

years of experience in learning a second language will already be a better

translator than the best machine translators in the world as well. Yet for

humans and machines alike, translation is a process, a series of steps that

must be followed in order to produce a successful translation. It is interesting

to note, however, that the various methods of translation for machines - the

various processes - become less and less like the process for humans as they

become more complicated. Furthermore, it was interesting to notice that as

the method of machine translation becomes more complicated, the results

are sometimes less accurate than the results of simpler methods that better

model the human rationale for translation. Therefore, the theory is, an algo-

rithm that attempts to model the human translation process would be more

successful than other, more complicated methods currently in development

today.

This theory is not entirely plausible for full-scale translators because of the

sheer magnitude of data that would be required. Humans are better transla-

4



tors than computers in part because they have the ability to perform semantic

analysis, because they have the necessary semantic information to be able

to, for example, determine the difference in a word’s definition based on its

usage in context. Creating a translator with a limited-scope of vocabulary

would require less data, leaving more room for semantic information to be

stored along with definitions. A limited-scope translator may seem unuseful

at first glance, but even humans fluent in any language, including their native

language, don’t know the entire vocabulary of the language. A language has

hundreds of thousands of words, and no human knows even half of them all.

A computer with a vocabulary of commonly used words that most people

know, along with information to avoid semantic problems, would therefore

be still useful for nonprofessional work.

3 Development

On the most superficial level, a translator is more user-friendly for an av-

erage person if it is GUI-based, rather than simply text-based. This part

of the development is finished. The program presents a GUI for the user.

A JFrame opens up with two text areas and a translate button. The text

areas are labeled ”English” and ”German”. The input text is typed into the

English window, the ”Translate” button is clicked, and the translator, once

finished, outputs the translated text into the German text area. Although

5



typing into the German text area is possible, the text in the German text

area does not affect the translator process.

The first problem to deal with in creating a machine translator is to be able

to recognize the words that are inputted into the system. A sentence or

multiple sentences are input into the translator, and a string consisting of

that entire sentence (or sentences) is passed to the translate() function. The

system loops through the string, finding all space (’ ’) characters and punc-

tuation characters (comma, period, etc) and records their positions. (It is

important to note the position of each punctuation mark, as well as what

kind of a punctuation mark it is, because the existence and position of punc-

tuation marks alter the meaning of a sentence.) The number of words in the

sentence is determined to be the number of spaces plus one. By recording

the position of each space, the string can then be broken up into the words.

The start position of each word is the position of each space, plus one, and

the end position is the position of the next space. This means that punctu-

ation at the end of any given word is placed into the String with that word,

but this is not a problem: the location of each punctuation mark is already

recorded, and the dictionary look-up of each word will first check to ensure

that the last character of each word is a letter; if not, it will simply disregard

the last character.

The next problem is the biggest problem of all, the problem of actual transla-

tion itself. Here there is no code yet written, but development of pseudocode

has begun already. As previously mentioned, translation is a process. In

6



order to write a translator program that follows the human translation pro-

cess, the human process must first be recognized and broken down into pro-

grammable steps. This is no easy task. Humans with five years of experience

in learning a language may already translate any given text quickly enough,

save time to look up unfamiliar words, that the process goes by too quickly

to fully take note of.

The basic process is not entirely determined yet, but there is some progress

on it. The process to determine the process has been as followed: given a

random sentence to translate, the sentence is first translated by a human,

then the process is noted. Each sentence given has ever-increasing difficulty

to translate. For example: the sentence, ”I ate an apple,” may be trans-

lated via the following process:

1) Find the subject and the verb. (I; ate)

2) Determine the tense and form of the verb. (ate = past, imperfekt form)

a) Translate subject and verb. (Ich; ass) (note - ”ass” is a real German verb

form.)

3) Determine what the verb requires. (ate -¿ eat; requires a direct object)

4) Find what the verb requires in the sentence. (direct object comes after

verb and article; apple)

5) Translate the article and the direct object. (ein; Apfel)

6) Consider the gender of the direct object, change article if necessary. (der

Apfel; ein -¿ einen)

Ich ass einen Apfel.

7



Two separate look-ups are performed in the process of translation upon the

input of the source text and the breaking of it into each separate word. The

first look-up, a method listLookUp(), involves searching for a given word in

a list that maps words to part of speech, a list ”list.txt”. (”Apple” must be

found in list.txt first as a noun.) An input stream is set up using a Buffere-

dReader wrapped around a FileReader, and directed towards list.txt. First

of all, the word must be transferred into all lower case letters and boiled

down into its base form in order to be found in the list. The list.txt does not

contain ”apples”, nor does it contain ”jumps” or ”jumped”, and does not

contain ”Apple” either. (It does, however, contain ”ate” and ”saw”, as these

are irregular forms.) Using the String class toLowerCase() method, ”Ap-

ples” may be transferred into ”apples”. Using String’s substring() method,

”apples” may be chopped down to ”apple” by creating a substring from 0 to

word.length()-1. Indeed, every word is checked for an ending of -s or -ed (-ing

present active tense does not occur in German, and thus is not allowed as

an English input) when searching the dictionary. Using three if-statements,

the word is first checked for in the dictionary, and if not found, a substring

of word missing the last letter is checked for, and then finally a substring of

word missing the last two letters is searched for. If word is ”apple”, then the

first check will yield a match; if the word is ”jumped”, then neither the first

check (”jumped”) nor the second check (”jumpe”) will yield a match, but

the third check (”jump”) will yield a match.

Having determined the part of speech which matches the word, the transla-

8



tion of the word must be known. In order to implement this grammar-based

translation method, not only must the translation be known, but the seman-

tic information of the word must also be known. This is the second look-up

for a given word. Several text files are set up, each containing a certain type

of word: nouns.txt, verbs.txt, paverbs.txt (”past tense verbs”, or irregular

forms), etc. Each of these text files contain a list of lines of semantic infor-

mation. verbs.txt has a format of

verb - translation - past tense conjugation pattern - case (if no

p)-separable prefix (”no”=none)[-conjugation]

and one line within that file is

do-machen-machte-gemacht-a-no

In this case, ”do” is the verb, ”machen” is its translation, and the rest of

the line contains semantic information about the verb, such as its past tense

forms, the case it takes, etc.

The part of speech determined from the look-up in list.txt is the name of

9



the specific text file which must next be searched; appending ”.txt” to the

end of the part of speech yields the filename of the next file to be searched.

The BufferedReader is redirected to that filename, and is passed to another

method, specificLookUp(). specificLookUp() takes another argument, a two-

celled String array, the first cell of which is the wantedWord and the second

cell of which is the ending it has (”none” if it has no ending). The ending of

the word is important in English, and passing this in an array ensures that

the information is passed along. specificLookUp() will check the correct list

- which the BufferedReader is already open to - by reading in each line and

checking a substring of the line from 0 to the first position of a dash. In the

aforementioned line example, the substring would be from [0, 2), including

character 0 and 1, or ”do”. Having passed the ending information along with

the word into the method, only one check is required instead of three, the one

corresponding to the correct ending information of the word. For example,

if the information passed was ”jumps” and ”s”, then the check performed

would be a substring from 0 to word.length()-1; if the information passed

was ”jump” and ”none”, then the check performed would be the whole word.

Once the word is found, the entire line is read in and one word is appended

to the end of the line, to increase the semantic information. For example, If

the word is a verb and has an ’s’ ending, then ”-3rd” is appended, because

this information clearly means the verb is in third-person form.

10



4 References

(I’ll put these in proper bibliomumbojumbographical order later!)

1. http://dict.leo.org (dictionary)

2. ”An Introduction To Machine Translation” (available online at

http://ourworld.compuserve.com/homepages/WJHutchins/IntroMT-TOC.htm)

3. http://www.comp.leeds.ac.uk/ugadmit/cogsci/spchlan/machtran.htm (some

info on machine translation)

4. http://dict.tu-chemnitz.de/ (dictionary)

11


