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Despite the significant evolution of techniques for 3D-reconstruction from planar cross sections, establishing the correspondence
of regions in adjacent slices remains an important issue. In this article, we propose a novel approach for solving the correspondence
problem in a flexible manner. We show that from the 3D Delaunay triangulation, it is possible to derive a distance measure among
regions lying in adjacent slices. Such distance is used to define a positive integer parameter, called β, responsible for establishing
the connections. Varying β thus allows the construction of different models from a given set of cross-sectional regions: small
values of β causes closer regions to be connected into a single component, and as β increases, more distant regions are connected
together. The algorithm, named β-connection, is described, and examples are provided that illustrate its applicability in solid
modeling and model reconstruction from real data. The underlying reconstruction method is effective, which jointly with the
β-connection correspondence strategy, improve the usability of volumetric reconstruction techniques considerably.
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1. INTRODUCTION

Over the years, many algorithms have been developed to reconstruct three-dimensional models from
a sequence of parallel planar cross sections of an object. Many such algorithms use the boundaries of
regions of interest to obtain three-dimensional models. Reconstruction from contour boundaries creates
models that may be ensured to match very precisely the regions of interest and their boundaries. This
is a fundamental requirement in many applications involving numerical simulations where a rigorous
definition of the simulation domain is crucial. This is the case of procedure simulations in medicine
and other health and earth sciences, for example, a blood-flow simulation in human arteries or a simu-
lation of water infiltration in soil. Detecting the regions of interest automatically may not be effective
in this kind of application, making a segmentation step in each data slice necessary. Once the segmen-
tation has been carried out, it is natural to make use of reconstruction from contours to generate the
models.
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Fig. 1. Objects with identical planar cross sections.

In order to be effective, algorithms that reconstruct three-dimensional models from contours must
handle three intrinsic problems, namely, correspondence, branching, and tiling. The correspondence
problem arises when it is necessary to decide which regions in adjacent slices must be connected.
Branching is related to the modeling of saddle points that may appear in the models. Tiling deals with
constructing a mesh that connects the planar regions in adjacent sections.

Although the reconstruction algorithms described in the literature present a range of different strate-
gies to solve the branching and tiling problems, very little has been done to handle the correspondence
problem in a flexible manner. Almost every reconstruction technique either supposes that the user pre-
viously defines the correspondence or assumes the existence of a proximity criterion to automatically
decide how to connect regions contained in adjacent planar sections.

Flexibility in the choice of the correspondence among regions is very important as the information
in the cross sections is not always sufficient to guarantee the correct connections, that is, the ones that
really correspond to the actual object being modeled. This fact is illustrated in Figure 1, where the
slices in Figure 1(a) could be obtained from any one of the objects shown in Figures 1(b), 1(c), or 1(d).
A less rigid approach for establishing the correspondence is highly desirable in applications such as
reconstruction of arterial structures and solid modeling. In many situations arising in these and other
domains, one does not know for certain which solution approximates best the original model, and the
user should be able to consider and investigate multiple alternatives.

In this work, we present a reconstruction method with a new flexible approach to tackle the correspon-
dence problem. The strategy relies on the construction of a three-dimensional Delaunay triangulation
from the regions contained in the planar cross sections. We show, as an important related contribution,
that the 3D Delaunay triangulation itself allows the definition of a distance measure among regions
contained in adjacent planar sections which may be used to control correspondences among regions
(the β parameter). From β, our framework allows multiple choices for the connections. Higher values
of β cause more regions to be kept in a single connected component, that is, distant regions tend to be
connected as β increases. Therefore, the strategy presented here defines a family of possible models
derivable from a single set of planar cross sections.

The branching and tiling problems are treated as proposed in the work by Nonato et al. [2001],
ensuring that the reconstructed models are piecewise linear manifolds (PL-manifold) and that the
intersection of the reconstructed model with the original set of cutting planes results in the original
planar regions. These are highly desirable characteristics in many applications such as numerical
simulation.

The idea of using numerical parameters to create a family of three-dimensional models is not new and
has already been employed in 3D-reconstruction from point clouds, for example, in algorithms such as in
the Alpha-shapes by Edelsbrunner and Mücke [1994]. However, the strategy adopted in Alpha-shapes
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is not directly applicable to the correspondence problem, and it may also be difficult to ensure that the
resulting model is a PL-manifold.

This work is organized as follows. Section 2 presents a brief description of prior work in three-
dimensional reconstruction. In Section 3, we review definitions and some properties of the Delaunay
triangulation and the Voronoi diagram, necessary to a better understanding of the following section.
In Section 4, we describe the β-connection approach, together with some definitions and results on
which it is based. The subdivision and disconnection processes employed to solve the branching and
tiling problems are presented in Section 5. In Section 6, we present the algorithm and its complexity
analysis. Section 7 contains some examples and a discussion of the results. Conclusions and further
work are discussed in Section 8.

2. RELATED WORK

In this section, we present a short review of relevant methods for 3D-reconstruction from planar cross
sections. In order to contextualize the methodology proposed here, we emphasize the strategy adopted
by each method for solving the correspondence problem.

Methods for 3D-reconstruction from planar sections may be classified as implicit, voxel-based, op-
timal, deformable models and heuristic. Some of them reconstruct the two-dimensional surface that
bounds the 3D object, while others generate a volumetric representation comprised of primitive volume
elements such as voxels or tetrahedra.

Implicit techniques create an implicit function whose zero set approximates the surface of the recon-
structed model. An example of this kind of technique is the work by Jones and Chen [1994]. They define
a signed distance field to create an implicit function that, jointly with Marching Cubes [Lorensen and
Cline 1987], is used to approximate the boundary surface of the original object. The correspondence is
automatically defined by the implicit function, making it difficult to change undesired or inappropriate
connections.

Voxel-based models approach a visualization of the reconstructed model directly from the regions
contained in the planar sections without building a geometrical surface or volume mesh to represent
the object [Kaufman 1998]. Although this kind of strategy can avoid several issues such as preseg-
mentation and those related to the management of the mesh, it is practically impossible to specify and
control the branching as the interpolations embedded in the visualization process actually ignore such
connections.

Optimal approaches usually use graph theory and optimization strategies to build a 3D model. Early
work in this type of reconstruction was developed by Keppel [1975]. In his work, both the correspondence
between contours and the surface bounding the maximal volume of the object under reconstruction
are obtained from an optimal search in a graph. Later, Shinagawa and Kunii [1991] expanded a discrete
toroidal graph to a continuous one. From this continuous graph, it is possible to define parametric
surfaces that generate the final model. Homotopy is employed both to construct the parametric surfaces
and to define the correspondence among regions. Another optimal reconstruction technique is proposed
by Meyers et al. [1992]. They assemble the best-fitting ellipses of each region in order to build a graph
from which a minimum spanning tree is derived, determining the correspondences. A final surface is
produced by a surface triangulation algorithm.

Deformable models employ geometry, physics, and approximation theory to generate a model from the
cross sections. From a seed (initial approximation), deformations are applied seeking to approximate the
original object. Although different connections may be obtained using distinct seeds, defining suitable
initial elements is not a trivial task. A good overview of this approach can be found in the book by Singh
et al. [1998].
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A large number of algorithms employ heuristics to construct a 3D model from planar cross sections.
One of the first heuristic approaches was that by Christiansen and Sederberg [1978]. It connects con-
tours in neighbouring slices by mapping their bounding box onto a unit square using the shortest edge
to make a connection. Ekoule et al. [1991] map the boundaries of the regions on their convex hull
and use a shortest edge strategy to connect the convex hulls in adjacent levels. Barequet and Sharir
[1996] adopt a geometric hashing method which makes use of orthogonal projections to match and then
triangulate portions of contours in adjacent slices. Gaps are filled out by a parametric walking in the
regions between two parts of the contours already matched, connecting corresponding points. Bajaj
et al. [1996] derive a reconstruction algorithm from a set of properties that should be satisfied by the
reconstructed surface model. When the properties cannot be met, the surface is completed by a trian-
gulation that considers the Voronoi skeletons generated from projections. The correspondence among
regions is implicitly defined by the surface properties and a volumetric model may also be generated
with a tetrahedralization process [Bajaj et al. 1999].

A heuristic approach that inspired many other works in the area is due to Boissonnat [1988]. He builds
2D Voronoi diagrams from the boundaries of regions in consecutive pairs of slices and projects such
diagrams to generate a graph from the intersection between the Voronoi edges. From this graph, a 3D
Delaunay triangulation is constructed which undergoes a tetrahedron elimination process to generate
the volumetric model. Region correspondence is defined both by the 3D Delaunay triangulation and the
tetrahedron elimination process. Geiger [1993] improved Boissonnat’s approach by handling the graph
produced by the projection of the 2D Voronoi diagram in order to handle complex branches and dissimilar
contours. Cheng and Dey [1999] use Boissonnat’s theoretical results to reconstruct surfaces without
generating the 3D Delaunay triangulation. The correspondence problem is also dealt with by projecting
Voronoi edges except that projections are restricted to relevant edges only. Contour correspondence is
defined by the orthogonal projection of 2D Voronoi edges and by analysing singularities in the model. A
difficulty common to all such approaches is the geometric problems involved in computing projections
and intersections.

Also in the follow up of Boissonnat’s [1988] mathematical framework, Nonato et al. [2001] build a
volumetric model from the 3D Delaunay triangulation, adding an approach that guarantees that re-
constructed models are 3D manifolds. However, no projections are computed since both tetrahedron
elimination and definition of correspondence are handled topologically rather than geometrically. Ex-
cept for the construction of the initial 3D Delaunay triangulation, the tools developed allow avoiding
geometrical computation for the definition of correspondence and branching. Although Nonato’s algo-
rithm accepts a previous definition of connections, the correspondence can be automatically determined
by a proximity criterion derived from the Delaunay triangulation. It is shown, in that work, that the
presence of a special type of tetrahedron, called reverse tetrahedron, indicates that regions in adjacent
slices are strongly related and should be connected.

That previous work is extended here to improve the definition of connections amongst regions. The
β-connection approach enables a family of models to be constructed from a single set of planar cross
sections, allowing multiple choices for the correspondence problem, a feature not found in current
reconstruction algorithms. In addition to supporting flexible connections among regions, it preserves the
good properties of the previous algorithm, that is, it produces PL-manifolds and meets the resampling
condition, guaranteeing that the intersection of the reconstructed model with the original set of cutting
planes produces the original planar regions.

3. BASIC CONCEPTS

In this section, we introduce some definitions and properties about the Delaunay triangulation and the
Voronoi diagram that will be used in the remaining text.
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3.1 Voronoi Diagram and Delaunay Triangulation

Let A = {x1, . . . , xn} be a set of points in general position in R3, that is, there is neither an affine
subspace of R3 containing A nor a subset of A with more than four cospherical points. In the following
discussion, the points are always assumed to be in general position.

The Voronoi diagram for A is a decomposition of R3 in convex three-dimensional cells V1, . . . , Vn that
exhibits the following properties.

(1) Each Vi contains only one point xi of A;

(2) Given x ∈ R3, x ∈ Vi iff d (x, xi) ≤ d (x, x j ) for every i �= j , where d is the euclidean distance.

It can be shown that the intersection of k Voronoi cells, 2 ≤ k ≤ 4, is either empty or it is a (4 − k)-
dimensional cell contained in the diagram.

A triangulation, called Delaunay triangulation, can be obtained from the Voronoi diagram by as-
sociating to each p-dimensional cell of the diagram a (3 − p)-simplex. This relationship between the
Delaunay triangulation and the Voronoi diagram, named duality, is explored by several reconstruction
algorithms [Boissonnat 1988; Bajaj et al. 1996; Geiger 1993].

It follows from the duality and the general position hypothesis that each 0-dimensional cell of the
diagram is the center of an empty sphere (Delaunay sphere) circumscribing a 3-simplex, that is, the
sphere centered in each vertex of the Voronoi diagram does not contain any point of A in its interior.
More details on Delaunay Triangulation and Voronoi Diagrams can be found elsewhere [Fortune 1992;
Aurenhammer 1991].

When the points of A are distributed in two consecutive parallel planar sections P1 and P2 (as in this
work), the intersection of the 3D Delaunay triangulation of A with Pi, i = 1, 2, is the 2D Delaunay
triangulation of the points in Pi. This property was proven by Boissonnat [1988] and will be useful in
the following sections. Another important fact proven by Boissonnat is that, if the points are vertices
of polygons contained in P1 and P2, we can ensure that the edges of these polygons are in the Delaunay
triangulation even if subdivided.

Based on the above premises, from now on we consider as our input a set of polygons that approximate
the boundaries of the regions contained in the parallel planar cross sections. Furthermore, we assume
that the edges of these contours are contained in the 3D Delaunay triangulation of its vertices. The
polygons satisfying these conditions are called input contours or just contours.

3.2 Voronoi Skeletons and Tetrahedron Types

Let C1 and C2 be two sets of contours contained in adjacent planar sections P1 and P2 and DT the 3D
Delaunay triangulation of the vertices in C1 ∪ C2. Suppose that the contours in C1 and C2 are oriented
in such a way that the interiors of the regions are always on their left side. Based on the orientation of
the contours, an edge of DT contained in P1 or P2 can be classified as internal or external based on its
position inside or outside the region. With this classification, the contour edges separate the internal
and external edges. Note that only the edges contained in Pi, i = 1, 2, are classified, the edges of DT
lying between P1 and P2 are not classified.

The tetrahedra of DT either have a face in P1 (P2) with an opposite vertex in P2 (P1), called tetra-
hedra type 1, or they have one edge in each of the planes P1 and P2, called tetrahedra type 2. A
tetrahedron of DT can be classified as internal, external or redundant based on the classification
of its edges. A tetrahedron with at least one edge internal to a region r is said to be an internal
tetrahedron of r. A tetrahedron with at least one external edge and no internal ones is said to be
an external tetrahedron, and a type 2 tetrahedron with two contour edges is called a redundant
tetrahedron.
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Fig. 2. Types of tetrahedra in the 3D Delaunay triangulation: (a) internal, (b) external, (c) redundant, (d) reverse.

Fig. 3. Voronoi skeleton.

A special case is the reverse tetrahedron [Nonato et al. 2001], a type 2 tetrahedron whose edges in
P1 and P2 are both internal edges. Figure 2 illustrates these definitions showing the different types
of tetrahedra. Note that a reverse tetrahedron can be internal to two regions simultaneously. Reverse
tetrahedra bear a straight relation with the positioning of regions in adjacent slices as discussed by
Nonato et al. [2001].

Let VDi be the 2D Voronoi diagram of the vertices of Ci in Pi i = 1, 2. The Voronoi skeleton of a region
r ⊂ Pi is defined as the subset of edges in VDi that are dual to internal edges of DT whose ends are
in the contours of Ci that bound r. Figure 3 shows a set of regions, their contours and correspondent
Voronoi skeletons.

We finish this section with a definition that introduces an important concept related to the proximity
among regions in adjacent slices, namely, strong overlapping. Strong overlapping gives a measure of
proximity between regions and, in Section 4, we show that this measure can be directly obtained from
DT.

Definition 3.1. Two regions r1 ⊂ P1 and r2 ⊂ P2 are strongly overlapping regions if the orthogonal
projection of the Voronoi skeleton of r1 on P2 intersects the Voronoi skeleton of r2.
ACM Transactions on Graphics, Vol. 24, No. 4, October 2005.
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Fig. 4. Graph generated from the Delaunay triangulation. The spheres represent region nodes, whereas cylinders are nodes
associated with redundant tetrahedra. The remaining nodes, shown as cones, represent external tetrahedra. External and
redundant tetrahedra of the DT are considered external nodes in the graph.

4. BETA-CONNECTION

The β-connetion algorithm tackles the reconstruction problem by handling pairs of slices. Thus, from
now on, our discussion is restricted to reconstructing two consecutive parallel planar sections.

The section starts with a description of a graph structure from which β-connection is derived.

4.1 The Graph Associated with DT

Let C1 and C2 be two sets of contours representing the boundaries of the regions contained in adjacent
planar sections P1 and P2, and DT the 3D Delaunay triangulation of the vertices in C1 ∪ C2. From DT ,
a graph G can be constructed that has two types of nodes. Each region in P1 and P2 and all its internal
tetrahedra define a so-called region node in G, and each external or redundant tetrahedron of DT define
an external node in G.

Edges linking pairs of nodes in G are obtained as follows.

(1) If two regions r1 and r2 have internal tetrahedra with a common face, or if there is a reverse
tetrahedron with internal edges in r1 and r2, then the region nodes representing r1 and r2 are
connected by an edge in G.

(2) If an external or redundant tetrahedron t shares a face with an internal tetrahedron of a region r,
then the region node representing r and the external node representing t are connected by an edge
in G.

(3) Two external nodes are connected if and only if the tetrahedra they represent share a face, that is,
external and redundant tetrahedra sharing a common face are connected by an edge in G.

Figure 4 illustrates a set of regions and the graph G generated from DT (see Figure 2). It follows from
the above construction process that the graph G is connected. Futhermore, the degree of any external
node in G ranges from 1 to 4.

A path of length n connecting two region nodes a and b in G is a sequence of nodes {τ1, . . . , τn+1}, such
that τ1 = a, τn+1 = b, and (τi, τi+1), i = 1, . . . , n, is an edge of G.

Definition 4.1. The distance between two region nodes a and b in G, denoted dG(a, b), is the length
of the shortest path connecting a and b.

As we show in the following, graph G provides understanding of the behavior of DT regarding the
connection of regions. Moreover, it offers a sound framework for deriving the β-connection algorithm.

4.2 The Beta-Components

This section introduces the concept of β-components which is the basis of the β-connection algorithm.

Definition 4.2. Let β be a natural number, that is, β can assume values from the set {0, 1, 2, . . . }. Two
region nodes a and b are said to be β-connected, denoted a

β≈ b, if there is a sequence of region nodes
{σ1, . . . , σk} in G, where σ1 = a and σk = b, such that dG(σi, σi+1) ≤ β.
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LEMMA 4.3.
β≈ is an equivalence relation.

PROOF. Let a, b, and c be three region nodes in G such that a
β≈ b and b

β≈ c. Since dG(a, a) = 0, a
β≈ a,

and the relation is reflexive. The symmetry is evident from the definition of dG once dG(a, b) = dG(b, a).
Finally, as long as a

β≈ b and b
β≈ c, there are two sequences of region nodes {σ1, . . . , σk} and {τ1, . . . , τm}

where σ1 = a, σk = b, τ1 = b, τm = c and dG(σi, σi+1) ≤ β, dG(τ j , τ j+1) ≤ β. Therefore, the distance dG
between consecutive pairs in the sequence {a, σ2, . . . , σk−1, b, τ2, . . . , τm−1, c} is smaller than, or equal to
β, proving the transitivity of

β≈.

As each region node represents a region contained in a plane Pi, i = 1, 2, β also defines equivalence
classes for the original regions, thus allowing the correspondence to be specified through equivalence
classes. Therefore, different values of β can produce different equivalence classes, enabling multiple
choices of correspondence among the regions.

Definition 4.4. The β-components of a model to be reconstructed are defined by the contours within
the same equivalence class generated from β.

An interesting characteristic of the this process is that a value β = 0 implies no correspondence
among regions, and, as β increases, the number of regions within a particular equivalence class also
tends to increase until all regions are contained in a single class. The next proposition presents an
important property of β-connection, namely, the proximity relationship between strongly overlapping
regions.

PROPOSITION 4.5. Let r1 ∪ P1 and r2 ∪ P2 be two strongly overlapping regions, then r1 and r2 are in the
same equivalence class for any β ≥ 1.

PROOF. As r1 and r2 are strongly overlapping regions, the orthogonal projections of their Voronoi
skeletons intersect. Let v1 and v2 be the skeleton edges of r1 and r2 intercepted by the skeleton projection.
If d1 and d2 are internal Delaunay edges dual to v1 and v2, it is not difficult to see that the intersection
of the sphere defined by the ends of d1 and d2 with P1 and P2 produces empty circles in these planes.
Thus, d1 and d2 define a reverse tetrahedron in DT , ensuring that G has an edge linking the region
nodes that represent r1 and r2. Therefore, for any β ≥ 1, r1 and r2 will be in the same equivalence
class.

From Proposition 4.5 we can see that strongly overlapping regions share reverse tetrahedra, guara-
teeing that they are always the first ones to be grouped when parameter β increases from zero. It can
also be shown ([Nonato et al. 2001]) that reverse tetrahedra appear only between strongly overlapping
regions. Thus, DT offers a topological mechanism to identify region proximity, given by the presence (or
absence) of reverse tetrahedra connecting the regions.

Another interesting property of DT is that it provides, through G, a measure of distance among
regions in consecutive planar sections. When two contours in adjacent slices are shifted apart as shown
in Figure 5, Delaunay empty spheres touching both contours tend to appear in the space between them,
originating a barrier of redundant tetrahedra and increasing the distance dG and the value of β needed
for keeping them in the same equivalence class. Figures 5(b) and 5(c) illustrate this property of DT.

The previous discussion implies that the 3D Delaunay triangulation itself introduces a type of dis-
tance measure among regions contained in adjacent planar cross sections. This distance can be used as
an input parameter to define a family of models from a given set of slices.

Other authors [Boissonnat 1988; Cheng and Dey 1999; Geiger 1993] have already suggested that the
3D Delaunay triangulation bears a proximity measure among regions in adjacent slices. To the best of
our knowledge this is the first time, however, that such a measure is explicitly shown.
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Fig. 5. The Delaunay triangulation creates a barrier of redundant tetrahedra when the contours are shifted apart. These figures
show the redundant tetrahedra and the graph G.

Fig. 6. (a) Set of contours; (b) Delaunay triangulation (external tetrahedra are transparent) (c) external tetrahedra elimination;
(d) vertices displacement.

5. COMPONENT DISCONNECTION AND SUBDIVISION PROCESS

A natural way to define the connected components of the reconstructed model is to associate them with
the β-components. Since the outcome of the Delaunay triangulation is a single, connected, simplicial
complex, the tetrahedra in DT linking components that should not be connected (because they are not
in the same β-components) must be removed. This tetrahedron elimination process is described in the
following.

5.1 Generation of Connected Components

Suppose that the connected components have already been specified through the equivalence classes de-
fined by the β parameter. In order to disconnect those components that belong to different β-components,
it is necessary to remove from DT all external and redundant tetrahedra whose vertices are not in the
same component.

Although tetrahedron elimination is necessary, it may not be sufficient to disconnect the components.
In some situations, as illustrated in Figure 6, components can remain connected through vertices or
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Fig. 7. (a) Reverse tetrahedron; (b) singularity produced by displacing vertices; (c) reconstruction after duplicating the reverse
tetrahedron.

contour edges even after tetrahedra elimination. In this case, vertices (and edges) must be translated
to disconnect components completely, as shown in Figure 6(d). Such a translation is implemented in
the following manner. First, the centroids of each connected component that will have elements moved
are computed. The centroid of a component is calculated from the vertices of its associated contours.
The offending elements are then displaced towards the centroid, keeping their z coordinate (assuming
z axis orthogonal to the slices) at a predefined intermediate position level between two slices. In our
implementation that level was set at one fourth of the interslice distance.

β = 0, that causes each region to generate an independent connected component, is a case that
deserves special attention. In this case, the reverse tetrahedra connecting strongly overlapping regions
do not allow disconnection to be executed as stated earlier. The problem is that the vertex displacement
employed to disconnect regions maintains the reverse tetrahedra attached to only one region, generating
wedges in the model. Figures 7(a) and 7(b) illustrate this scenario.

A wedge can originate a singularity, that is, its neighborhood is homeomorphic neither to a sphere
nor to a half-sphere. Singularities must be avoided to ensure that the reconstructed model is a PL-
manifold. Thus, to disconnect strongly overlapping regions, it is necessary to duplicate the reverse
tetrahedra and then translate duplicate vertices and edges to an appropriate intermediate position, as
shown in Figure 7(c).

5.2 Subdivision of Tetrahedra

After the disconnection process, the external tetrahedra in each component must also be eliminated
to guarantee the resampling condition. However, as in the component disconnection case, this may
introduce singularities. To ensure the resampling and manifold conditions in the reconstructed model,
a tetrahedron subdivision process is employed. The subdivision strategy adopted here is similar to the
one described in detail by Nonato et al. [2001], summarized as folows.

(1) Each external tetrahedron whose elimination does not generate singularities is removed.

(2) The remaining external tetrahedra are subdivided.

(3) The new vertices introduced by the subdivision are displaced to an intermediate position between
the consecutive slices.

The subdivision must respect two criteria. For a type 1 tetrahedron, a new vertex is inserted in each
external edge. The number of new tetrahedra depends on the number of new vertices created: two new
tetrahedra are created if one vertex is added, and three or four new tetrahedra are created if two or
three vertices are added, respectively. Figure 8(a) shows the subdivision cases for a type 1 tetrahedron.
For a type 2 tetrahedron, two or four new tetrahedra may be introduced, depending on whether one or
two vertices were inserted into the external edges, as shown in Figure 8(b).
ACM Transactions on Graphics, Vol. 24, No. 4, October 2005.
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Fig. 8. Subdivision cases for: (a) type 1 tetrahedron; (b) type 2 tetrahedron.

Fig. 9. Result of reconstruction after tetrahedron subdivision in a one-to-three branching case.

In addition to guaranteeing the resampling and manifold conditions, the subdivision handles the
branching problem properly, as illustrated in Figure 9, where one contour must be connected to three
other ones. For further information, we refer to a previous work by Nonato et al. [2001] where handling
of subdivision and branching is treated and illustrated in detail.

In the following section, we describe how the previously described procedures are integrated in the
β-Connection algorithm.

6. β-CONNECTION ALGORITHM

The β-connection algorithm can be outlined as follows.
Let C be a set of contours bounding the regions contained in two adjacent planar sections and β be a natural

number.

(1) Delaunay triangulation. Compute the 3D Delaunay triangulation of vertices in C. Classify tetrahedra as in-
ternal, external, reverse, or redundant as outlined in Section 3.2.

(2) β-components. Create the graph associated to DT and compute the β-components from the equivalence classes
defined by β, as outlined in Section 4.

(3) Connected components. Remove the external and redundant tetrahedra connecting the β-components. If nec-
essary, displace vertices and duplicate reverse tetrahedra, as outlined in Section 5.

(4) Reconstruction. For each β-component (see Section 5):
(a) remove the external tetrahedra whose elimination does not introduce singularities (and the redundant

tetrahedra attached to them);
(b) subdivide the remaining external tetrahedra;
(c) translate the new vertices to an intermediate position between slices.
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Fig. 10. (a) Original contours; models generated for β equal: (b) 0; (c) 1; (d) 3.

A few issues must be highlighted regarding the implementation of the algorithm.

—The distances and equivalence classes that completely define the connected components may be
extracted directly from the Delaunay triangulation produced in Step 1. Thus, it is not necessary to
construct an explicit representation of its associated graph.

—In order to implement tetrahedral elimination in Step 3, all external and redundant tetrahedra
with vertices in different components are deleted. After removal, vertices from one component that
remained in the other one are the ones to be displaced as illustrated in Figure 6.

—In Step 4, to verify whether tetrahedral elimination introduces singularities, the stars of the ver-
tices lying on the external tetrahedra of a component are checked. If verification indicates that no
singularities will be introduced, the tetrahedra are eliminated. Otherwise, they are subdivided.

The algorithm performs geometrical calculations only when DT is being built and later in the vertices
displacement process. All the remaning operations and tests are topological, thus ensuring a robust
and efficient implementation.

Since the classification, elimination, and subdivision steps can all be done in linear time on the
number of tetrahedra, the computational cost of the algorithm is governed by the construction of the
Delaunay triangulation and by the computation of the β-components. The 3D Delaunay triangulation
can be built in O(n2) with an incremental algorithm [Fortune 1992] where n is the number of vertices in
the triangulation. Computation of β-components is reduced to computing, for each region node σi ∈ G,
the distance from σi to all region nodes σ j ∈ G, i �= j . This computation can be done with a breadth-first
search algorithm [Cormen et al. 1997] on graph G in O(Nr E), where Nr and E are the numbers of region
nodes and edges in G, respectively.

7. RESULTS AND EXAMPLES

This section presents some models created with the β-connection algorithm. The code was written in
C++ and uses the CGAL library (www.cgal.org) to build the 3D Delaunay triangulation. Visualizations
were generated with the Visualization Toolkit (VTK) [Schröeder et al. 2002].

We start with a simple but illustrative example that shows how the β-parameter defines the corre-
spondences. Figure 10(a) presents a set of six contours, two in one slice and four in the following one,
from which 3D-models are to be reconstructed. Figures 10(b) to 10(d) show the models produced by
β-connection with values of β equal to 0, 1 and 3, respectively. As previously mentioned, higher values
of β cause more regions to be connected. Varying β thus enables multiple reconstruction alternatives
to be considered.

The flexibility of establishing alternative connections renders β-connection an interesting and pow-
erful tool in solid modeling applications, because varying a single discrete parameter allows a whole
family of models to be constructed from the same set of contours. Figures 11 and 12 illustrate this
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Fig. 11. Models generated from the countours in (a) for β equal to: (b) 0; (c) 1; (d) 3; (e) 5.

Fig. 12. Models generated with different values of β in each level. The sets of values are (a) (0, 1, 5, 1, 0); (b) (2, 1, 5, 1, 2);
(c) (2, 5, 1, 5, 2).

potential. Figures 11(b) to 11(e) present three different models generated from the contours shown in
Figure 11(a) for β values equal to 0,1,3 and 5, respectively.

Another truly useful property of β-connection that makes it a versatile tool in solid modeling applica-
tions is the possibility of varying the values of β across different pairs of slices. This is possible because
the algorithm separately handles regions contained in pairs of adjacent planar sections. Figures 12(a)
to 12(c) show three different models obtained by assigning different β values to each pair of slices. One
can observe how the topology of the resulting models changes in each case.

We illustrate the potential applicability of the approach for modeling objects in pratical situations
with an example from real data. Figure 13(a) shows a set of contours lying in planar cross sections of a
blood vessel. In complex structures such as this one, it is very difficult to decide the correct way to connect
the regions. Figures 13(b) and 13(c) present the models produced from the contours in Figure 13(a) for β

equal to 1 and 2, respectively. One may compare Figure 13(a) and 13(b), observing how the connections
changed. For example, those elements pointed by the black arrows remain disconnected for a choice of
β = 1, but are connected together when β assumes the value 2.

In addition to the elements visually indicated in Figure 13(b), several other regions are connected
differently when β increases from 1 to 2. Figures 14(a) and 14(b) show a wireframe view of part of the
blood vessel model to illustrate how the connections changed.
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Fig. 13. (a) A set of contours of a blood vessel; (b) model generated for β = 1; (c) model generated for β = 2.

Figure 15 shows the complete reconstruction of the whole set of 151 slices of the blood vessel. It
illustrates both the algorithm capabilities for handling large data sets with complex geometry, and how
the β parameter may be tuned to derive a model that better approximates the real object.

Highlighted in Figure 15(b) are the regions where the change of β made the most difference. The
region highlighted in the top right rectangle corresponds to the same blood vessel segment displayed
ACM Transactions on Graphics, Vol. 24, No. 4, October 2005.
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Fig. 14. Wireframe viewing of the reconstructed blood vessel. (a) β = 1; (b) β = 2.

in Figures 13 to 14. Figure 15(d) superimposes one reconstruction on the other to emphasize the parts
with most changes.

Both reconstructions for the other two highlighted regions are shown in detail in the following figures.
Figure 16 shows zoomed views of the region in the bottom right rectangle in Figure 15. Figure 17 shows
the reconstructions of the region in the top left rectangle in Figure 15 for two values of β.

Table I shows the execution times for each step of the reconstruction process applied to the blood vessel
data whose resulting model is shown in Figure 15. The data contains 151 slices with 1,222 contours
and 29,141 vertices. The boundary of the resulting mesh contains 55,260 triangles for β = 1 and 55,286
triangles for β = 2. Execution times show that the largest computational cost is due to the Delaunay
triangulation. Tetrahedral elimination and handling of external tetrahedra within components, called
branching and concavity in the table, are the next most expensive steps. The table ignores the time
spent to load and write data onto a disk.

It is worth noting that, in applications requiring simulations with different models, such as surgical
planning and fluid flow, the ability of redefining the correspondences and investigating alternatives
is paramount. Existing reconstruction techniques do not offer an effective mechanism to investigate
alternative correspondences, and the task can thus become tiresome and time-consuming. β-connection
provides a straightforward approach for changing the correspondences and generating alternative mod-
els for further investigation.
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Fig. 15. Views of the reconstruction of the whole blood vessel. (a) contours; (b) β = 1; (c) β = 2; (d) superimposes one reconstruc-
tion on the other.

8. CONCLUSIONS AND FUTURE WORK

This article introduces a novel approach to treat the connection problem in the reconstruction of 3D-
structures from planar cross sections. The technique offers great flexibility in the choice of how compo-
nents are to be connected and solves the branching and tiling problems in a very satisfactory way.

From a theoretical framework that allows inferring a distance measure from the 3D Delaunay tri-
angulation constructed from a set of planar regions, our methodology calculates the distance among
regions, and an algorithm is defined that can generate a one-parameter family of models from a given
set of samples.

The algorithm’s applicability was illustrated with the generation of solid models with different topolo-
gies from a single set of contours and the reconstruction of an arterial system from real data. The
possibility of varying the value of parameter β to produce different results in the reconstruction al-
lows a user to investigate alternative types of connections that would not be easily obtained otherwise
and, thus, to study the nature of certain objects closely. Moreover, the fact that the resulting mesh is
free of singularities enables the resulting models to be used in numerical simulations of real physical
phenomena with no need for postprocessing.

A major contribution of this technique is to ease the user’s intervention on the decision of the con-
nections as it can now be made by varying a single parameter (β), rather than by acting directly on the
contours which is a main drawback of reconstruction from planar cross sections. The usability of the
reconstruction process is, therefore, largely increased.
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Fig. 16. Detail on bottom right corner of Figure 15. (a) β = 1; (b) β = 2.

This facility may be particularly useful when studying certain data sets for which connections are an
important issue but are not completely understood. One example are studies of water infiltration in soil
for agricultural purposes. Researchers now can track the path followed by water in a soil sample from
a set of 2D-tomographic images. Segmentation, 3D-reconstruction, and visualization of water paths in
the soil can assist domain specialists in conceiving and studying models of soil behavior in this context.
Applications of this type also motivate our current work.
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Fig. 17. Detail on top left corner of Figure 15. (a) β = 1; (b) β = 2.

We are now working to improve the quality of the volumetric mesh generated by β-connection so that
it becomes better suited for numerical simulation. An overall remeshing technique, applicable to the
meshes produced by the algorithm, is under development.

Further work in our plans is to compare the variation of parameter β against the correctness of the
resulting models. Taking as a starting point a set of known objects with varying topology, we intend to
relate the sampling resolution with the β value required to obtain the correct object as output, hoping
to achieve a method that will automatically decide the ideal β value for a particular class of objects. For
instance, taking a typical blood vessel, or a typical soil sample of some kind, we wish to define what β

values could be used to ensure a correct reconstruction at a given sampling rate.
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Table I. Computational Times (in Ms and Percentual Values) for Each
Step of the Reconstruction Process

3D Delaunay Edge Tetrahedra Connected
Triangulation Classification Classification Components

β = 1 228.20 0.50 0.51 8.78
74.11% 0.16% 0.16% 2.85%

β = 2 228.19 0.53 0.47 8.45
74.11% 0.17% 0.15% 2.74%

Tetrahedra Displacement of Branching and Tetrahedra
Elimination Vertices (Edges) Concavities Subdivision

β = 1 33.40 2.01 34.37 0.06
10.85% 0.65% 11.16% 0.03%

β = 2 33.23 2.08 35.82 0.14
10.79% 0.67% 11.64% 0.05%
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