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1. INTRODUCTION

Finding shortest-path information in a graph is one of the most commonly
encountered problems in the study of transportation and communication net-
works and has applications in routing, scheduling, and computation of network
flows, in the context of document formatting and so on. Since changes to such
networks, caused by link failures or new links being added to the service, oc-
cur often, the incremental shortest-path problem is relevant and important for
these applications.

Problem statement: Given a database, the view maintenance problem is
concerned with the efficient computation of the new contents of a given view
when updates to the database occur. We consider the view maintenance problem
for the situation when the database contains a weighted graph and the view
is either the transitive closure or the answer to the all-pairs shortest distance
(APSD) problem.

Contributions:

(1) We give algorithms for incrementally maintaining the all-pairs shortest
distance view in graphs after arc insertions and deletions. We do this by
first considering the situation where arcs have positive distance (APSD>0),
and then extending to the situation where arcs have non-negative distance
(APSD≥0).1

(2) We show that the algorithms for maintaining the APSD view can also main-
tain transitive closure for a larger class of graphs, which have not been
explored before.

While our algorithms only directly handle single arc insertions and deletions,
they can also handle distance-modification on an arc, since each such change
is equivalent to deleting an arc and then adding the same arc with the new
distance.

Our maintenance algorithms only use first-order queries with addition “+”
and less-than “<” operations, namely FO(+, <). Our results are useful as
follows:

—Since FO(+, <) is supported by almost all current database systems, our
incremental maintenance algorithms are more appropriate for database ap-
plications than non-FO incremental algorithms. Our algorithms can be exe-
cuted on any relational database system, without the need for embedding in
a host language. For example, in the Oracle database system, our algorithms

1The restriction of “positive distance” implies that each shortest walk between two nodes is also a
shortest path between the same two nodes; the presence of negative-distance arcs can imply that
shortest walks may not exist.
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can be implemented in SQL and directly processed by an SQL statement
executor on the server without requiring going through the PL/SQL engine.
This avoids the overhead of going through extra processing engines.

In relational databases, the optimization of recursive queries is signifi-
cantly harder than that of nonrecursive queries. The absence of recursive
mechanisms in our algorithms (which use simple relational data structures
and are written in relational queries) could make additional optimizations
possible, as a large range of query optimization techniques can be applied.

—Theoretically, the time complexity of our algorithms is dominated by “+” and
“<” operations with an upper bound of NC (the class of problems computable
in polylogarithmic time with a polynomially many processors). When the
distance of each arc in the graph is an integer, our algorithms have AC0 data
complexity [Grumbach and Su 1995]. (AC0 is the class of problems that can be
solved using polynomially many processors in constant time). To the best of
our knowledge, no AC0 incremental algorithms (even for non-FO algorithms)
for the APSD problem, supporting both arc deletions and arc insertions, on
general undirected graphs (and digraphs with certain properties) have been
previously reported. Our algorithms are the first of this kind.

—From a practical perspective, the incremental algorithms are efficient, since
each involves a couple of joins. The joins can be evaluated efficiently, by using
indexing and the deleted edge to identify the tuples needed in the joins.

All our algorithms employ one common technique as the basis for the main-
tenance results for an arc deletion: They first delete a set of tuples whose ex-
istence in the relation depends on the deleted arc; this step may delete more
than necessary. Then they correct the wrong deletions by doing the relational
natural join of the result of the first step with the modified graph several times.
This generalizes the technique used in Dong and Pang [1997] and Dong and
Su [2000] for the maintenance of the transitive closure of acyclic digraphs and
undirected graphs.

Organization: We define necessary notations in Section 2. Section 3 gives our
incremental algorithm for the distance problem in undirected graphs. Section 4
considers the APSD algorithms in digraphs. Section 5 discusses applications of
our results to the maintenance of transitive closure and shortest paths. Section
6 discusses complexity issues. Section 7 is devoted to related work. Section 8
gives some concluding remarks.

2. PRELIMINARIES

In this section we present some standard terminology of graph theory, together
with some necessary new notations and definitions. We assume the reader is
familiar with the first-order logic or the relational calculus.

A directed graph (digraph) is a pair G = (V , E), where V is a finite set of
nodes and E ⊆ V × V is a set of ordered pairs or arcs. When multiple graphs
are present, we will use V (G) and E(G) to represent V and E of the underlying
graph G. A digraph G ′ = (V ′, E ′) is a subgraph of G = (V , E) if V ′ ⊆ V and
E ′ ⊆ E.
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A sequence u0u1 . . . un (n > 0) of nodes in G is a walk from u0 to un if (ui−1, ui)
is in E for each i ∈ [1..n]; the sequence is a path if it is a walk and ui �= u j
whenever 0 ≤ i < j ≤ n. We say uiui+1 . . . u j−1u j is a subpath of u0u1 . . . un
for all 0 ≤ i < j ≤ n; when i �= 0 or j �= n, we say the subpath is strict. The
sequence u0u1 . . . un (n > 0) is a cycle if u0 = un and ui �= u j for all 0 ≤ i < j ≤ n
such that (i, j ) �= (0, n). An arc on a cycle is called a cyclic arc. G is acyclic if it
contains no cycles. Let TCG be the transitive closure of G, i.e., TCG = {(x, y) |
there exists a path from x to y in G}. Since arcs of the form (u, u) in a digraph
contribute only in a trivial way to its transitive closure, we will only consider
digraphs without such arcs. A strongly connected component (SCC) of G is a
maximal subset X of V such that (x, y) ∈ TCG for each pair of nodes x, y ∈ X .

We will consider weighted graphs G, where each arc e has a distance (denoted
as dist(e)). A distance can either be an integer or a floating point number. dist(e)
may represent a cost of some type associated with the arc e.

The distance of a path or a walk p, denoted as dist(p), is the sum of dist(e)
over all arcs e on p. The length of p, denoted as length(p), is the number of
arcs on p. The shortest-distance (shortest-length, respectively) path (or walk)
from node x to node y is the path (or walk) from x to y with minimum dis-
tance (length, respectively). A shortest path is a path that has the shortest
distance.

We now introduce some relations for shortest-distance paths, SPG , and for
shortest-length paths, SPDG , for digraph G; these relations will play a key role
in our maintenance algorithms. SPG is defined as: SPG(x, y , d ) is true if and
only if the shortest path from x to y in G has distance d . We define SPG(u, u, 0)
for each node u of G and SPG(x, y , ∞) if there is no path from x to y . SPDG
is defined as: SPDG(x, y , l , d ) is true if and only if (i) the shortest paths from
node x to node y in G have distance d and (ii) one shortest path from x to y in
G has length l and (iii) no shortest path from x to y in G has length less than
l . When there is no path from x to y in G, we assume SPDG(x, y , ∞, ∞) holds.

The all-pair shortest-distance (APSD) problem is to find the shortest distance
between every pair of nodes in a digraph. A restricted form of the APSD problem
is the APSD>0 (APSD≥0, respectively) problem which restricts each arc in the
graph to a positive (non-negative, respectively) distance.

An undirected graph G is a pair (V , E) such that E is symmetric (in the
sense that (b, a) ∈ E holds whenever (a, b) ∈ E holds.) For undirected graphs,
a node (an arc, respectively) is called a vertex (an edge, respectively); concepts
such as walk, path, and transitive closure can be defined in a similar way as in a
digraph.

While paths and walks in undirected graphs are not ordered in general, we
sometimes need to emphasize an ordering of the vertices. For example, we will
say a path p is from vertex u to vertex v to imply that the vertices of p are
ordered in the form of u . . . v, and we say a path p from u to v goes through edge
e = (a, b) in the order of ab to imply that p has the form of p = u . . . ab . . . v.

Example 2.1. In the graph G shown in Figure 1(1), “ihlghlk” is a walk;
“kbcd” and “klgfed” are paths; “kbcd” is a shortest path between k and d ; the
shortest distance between k and d is 16.
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Fig. 1. Shortest distances.

Most of our incremental maintenance algorithms will exploit the following
property, which relates the shortest paths with the auxiliary relation to be
maintained. A digraph G is said to be sp-bound for arc e under SP if no two
consecutive shortest paths px y = xu1 . . . ui y and pyz = yv1 . . . vj z of SP share
the arc e. A digraph G is sp-bound under SP if and only if it is sp-bound for each
arc e ∈ G under SP. The notion of sp-bound can be extended to other relations
such as TC and SPD. This notion allows us to handle many types of graphs:
An acyclic digraph G is sp-bound under TCG [Dong and Pang 1997]. Moreover,
as will be seen later, (1) each undirected graph G is sp-bound under SPG (but
not TCG) if each edge of G has a positive distance. (2) Each undirected graph
G is sp-bound under SPDG (but not SPG) if each edge of G has a non-negative
distance. (3) There exist special sp-bound non-acyclic digraphs under SPG (or
SPDG).

We will use G(a, b) or G(e) to denote “arc e = (a, b) is in G”. We use G+e to
denote the graph that results from inserting e to G, and use G−e to denote the
graph that results from deleting e from G.

We use min{l1, l2, . . . , lk} to denote the minimum among the num-
bers in the set {l1, l2, . . . , lk}. Since the min operator is only applied to
a bounded set at a time in our algorithms, it can be replaced by expres-
sions using less-than (<). For example, min{a, b, c} can be expressed as
[((a ≤ b) ∧ (a ≤ c)) → (min{a, b, c} = a)] ∨ [((b ≤ a) ∧ (b ≤ c)) → (min{a, b, c} =
b)] ∨ [(c ≤ a) ∧ (c ≤ b) → (min{a, b, c} = c)].

For each binary relation R, we let R̂ = R ∪ {(u, u)|u is a vertex in R}.

3. THE APSD PROBLEM IN UNDIRECTED GRAPHS

We now discuss the APSD>0 (APSD≥0, respectively) problem, for undirected
graphs where each edge has a positive (non-negative, respectively) distance.
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3.1 Incremental Algorithm for The APSD>0 Problem

In this section, for an undirected graph G where each edge has a positive dis-
tance, we give incremental maintenance algorithms to find the shortest dis-
tance between every pair of vertices after single-edge insertion and deletion.
The technique for edge insertion is fairly simple and similar techniques have
been used previously. The technique for edge deletion is new and much more
involved.

The algorithms in this section use the following lemma.

LEMMA 3.1. Let G be an undirected graph.

(1) If path p = uw1 . . . wkv (u = w0, v = wk+1) is a shortest path between u and
v, then any strict subpath q = wi . . . wj of p for 0 ≤ i < j ≤ k+1 is a shortest
path between wi and wj .

(2) If dist(g ) > 0 for each edge g ∈ G, then for each non-path walk between two
vertices there exists a shorter path between the same vertices.

PROOF. (1) Otherwise, let q = wi . . . wj be a strict subpath of p which is not
a shortest path between wi and wj . Let a shortest path between wi and wj be
q1 = wiv1 . . . vhwj . Then dist(q1) < dist(q). Let q2 = uw1..wiv1..vhwj ..wkv. It
follows that dist(q2) < dist(p). That is contradictory to p being a shortest path,
and so (1) holds.

(2) Let q = u0u1 . . . uk be a non-path walk. Then there exist 0 ≤ i < j ≤ k
such that ui = u j and the distance of subwalk ui . . . u j of q is positive. Now,
q′ = u0..uiu j+1..uk has a shorter distance than q. Repeating this process if q′

is not a path, we will ultimately obtain a path from u0 to uk that is shorter
than q.

The converse of Lemma 3.1(1) does not hold. For example, let G be {(a, b, 1),
(b, c, 1), (a, c, 1)}. Then SPG(a, b, 1) ∧ SPG(b, c, 1) ∧ SPG(a, c, 1) holds. The path
a b c is not a shortest path in G, but the subpaths a b and b c are shortest
paths.

3.1.1 Inserting Edge e in G. The technique for edge insertion is simple.
Similar techniques have been used in many recursive algorithms [Shmueli
and Itai 1984; Even and Gazit 1985; Blakeley et al. 1986; La Poutre and van
Leeuwen 1987; Buchsbaum et al. 1990; Lin and Zhang 1990; Ausiello et al.
1992; Harrison and Dietrich 1992; Ramalingam 1996] and in the first-order
algorithms of Dong and Topor [1992], and Patnaik and Immerman [1994].

THEOREM 3.2. We can construct a formula ψ of FO(+, <) from SPG and e =
(a, b) such that SPG+e ≡ ψ , provided that G+e is an undirected graph with
dist(g ) > 0 for each edge g.

PROOF. Let

ψ(x, y , d ) ≡ (∃d0, d1, d2, d3, d4) (SPG(x, a, d1) ∧ SPG(b, y , d2) ∨
SPG(x, b, d3) ∧ SPG(a, y , d4)) ∧ SPG(x, y , d0) ∧
(d = min{dist(e) + d1 + d2, dist(e) + d3 + d4, d0}).
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Observe that the min is applied to a set of three numbers. As noted in Section
2, it can be replaced by formulas using <. Therefore, ψ ∈ FO(+, <).

We need to show SPG+e ≡ ψ . To show that SPG+e ⇒ ψ , let (x, y , d ) be
any given tuple of SPG+e , Two cases arise: (1) Edge e is not on any shortest
path between x and y . Then SPG(x, y , d ) holds and so ψ(x, y , d ) is true. (2)
Edge e is on a shortest path between x and y . Let us assume the shortest
path has the form of x . . . w . . . ab . . . v . . . y ; the situation when the shortest
path has the form of x . . . w . . . ba . . . v . . . y is similar. By Lemma 3.1, since path
x . . . w . . . ab . . . v . . . y is the shortest path in G+e, paths q1 = x . . . w . . . a and
q2 = b . . . v . . . y are shortest paths and they clearly do not pass through edge e.
Therefore, d = dist(q1) + dist(q2) + dist(e) and ψ(x, y , d ) is true.

To show that ψ ⇒ SPG+e , let (x, y , d ) be a tuple such that ψ(x, y , d ) is true.
Since ψ is selecting the smallest distance d of the shortest paths from x to y that
passes through e and the shortest paths from x to y that do not pass through e.
this d is clearly the shortest distance from x to y . Hence SPG+e (x, y , d ) holds.

The SQL algorithm for edge insertion is presented in Table 1.

Example 3.3. Consider the graph G shown in Figure 1(1):

G = {(a, j , 1), (a, e, 52), (b, c, 7), (b, k, 7), (c, d , 2), (d , e, 2), (e, f , 4),
( f , g , 6), (g , h, 3), (g , l , 2), (h, i, 8), (h, l , 2), (i, j , 19), (k, l , 6)}.

The shortest paths between vertices of G are given in Figure 1(2). Consider
inserting the edge ε = (a, b, 2) (dist(ε) = 2). The shortest paths of G+ε computed
by the algorithm are shown in Figure 1(3). The shaded numbers of Figure 1(2)
are the ones that are modified after insertion. For instance, SPG+ε

(a, c, 9) holds
since 9 = min{2 + 7, 45}, G(a, b, 2), SPG(b, c, 7) and SPG(a, c, 45).

3.1.2 Deleting Edge e from G. The main result in the section is for edge
deletion in undirected graphs. Our maintenance algorithm uses one property
(Lemma 3.5): any shortest path of G−e can be regenerated through the join of
two shortest paths, which do not pass through edge e, with one edge in G−e.

THEOREM 3.4. We can construct a formula ψ of FO(+, <) from SPG and e
such that SPG−e ≡ ψ , provided that G is an undirected graph where each edge
has a positive distance.

To construct ψ , we need some lemmas, including the following key lemma,
which proves that G is sp-bound under SPG .

LEMMA 3.5. Let G be a graph where each edge has a positive distance. Sup-
pose there exists a shortest path p1 = u . . . ab . . . v from vertex u to vertex v of G,
which goes through edge e = (a, b) in the order of ab (as shown in Figure 2(I )).
Let p2 = uw1 . . . wkv (u = w0 and v = wk+1) be a shortest path between u and v
in G−e.

a. If a shortest path of G from u to wi (wi is on p2, 1 ≤ i ≤ k+1) goes through
edge e, then it goes through edge e in the order of ab.

b. Similarly, if a shortest path of G from wi (wi is on p2, 0 ≤ i ≤ k)
to v goes through edge e, then it goes through edge e in the order of ab.
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Table I. SQL Queries for Maintenance after Insertion

% TABLE Graph(Start,Tail,Dist): A tuple (s,t,d) is in Graph if the distance

% of edge (s,t) is d; for each vertex x, the tuple (x,x,0) is also in Graph.

% TABLE ShortDis(Start,Tail,Dist): A tuple (s,t,d) of ShortDis means that

% the shortest distance between vertex s and t is d; for each vertex x,

% (x,x,0) is in ShortDis.

% TABLE Susp: tuples which may need to be modified when graph G changes.

% TABLE Graph, ShortDis and Susp are symmetric.

%

% When inserting edge e=(a,b) with dist(e)>0, the shortest distances formed

% by the following paths could be affected:

% (1) any path from x through (a,b) to y; such paths are stored in Susp1

% (2) any path from x through (b,a) to y; such paths are stored in Susp2

INSERT INTO Susp1(Start,Tail,Dist)

SELECT X.Start, Y.Tail, dist(e)+X.Dist+Y.Dist

FROM ShortDis X, ShortDis Y

WHERE X.Tail=a AND Y.Start=b AND

((dist(e)+X.Dist+Y.Dist <

(SELECT Z.Dist FROM ShortDis Z

WHERE Z.Start=X.Start AND Z.Tail=Y.Tail)

OR (NOT EXISTS (SELECT * FROM ShortDis Z

WHERE Z.Start=X.Start AND Z.Tail=Y.Tail));

INSERT INTO Susp2(Start,Tail,Dist)

SELECT X.Start, Y.Tail, dist(e)+X.Dist+Y.Dist

FROM ShortDis X, ShortDis Y

WHERE X.Tail=b AND Y.Start=a AND

((dist(e)+X.Dist+Y.Dist <

(SELECT Z.Dist FROM ShortDis Z

WHERE Z.Start=X.Start AND Z.Tail=Y.Tail)

OR (NOT EXISTS (SELECT * FROM ShortDis Z

WHERE Z.Start=X.Start AND Z.Tail=Y.Tail));

% TABLE Susp = UNION of Susp1 and Susp2. For each (start,tail,_) in Susp,

% there is only one dist such that (start,tail,dist) in Susp (see Lemmas

% in Section 3.1)

INSERT INTO Susp(Start,Tail,Dist)

SELECT *

FROM (Susp1 UNION Susp2);

% Remove tuples of ShortDis that no longer express shortest distance.

DELETE FROM ShortDis (Start,Tail,Dist) WHERE (Start,Tail) IN

(SELECT Start,Tail FROM Susp);

% Re-insert the short distance triples with new distances to get result:

INSERT INTO ShortDis (Start,Tail,Dist) SELECT * FROM Susp;

c. There exists a vertex wi (1 ≤ i ≤ k + 1) such that for subpaths p21 =
uw1 . . . wi−1 and p22 = wi . . . v of p2, no shortest path of G among vertices
u, w1, . . . , wi−1, and no shortest path of G among vertices wi, wi+1, . . . , v, goes
through edge e.

PROOF. Since (a) and (b) are dual, we will prove (a) and (c) only.
For (a), we show that, for any vertex wi on the path p2, if there exists a

shortest path between u and wi that goes through e then the shortest path
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Fig. 2. Regenerating shortest paths after an edge deletion.

cannot go through e in the order of u . . . ba . . . wi; the situation of Figure 2(II)
cannot happen. Assume otherwise. Then there exists a shortest path between
u and wi (for some 0 < i ≤ k + 1) that has the form of u . . . ba . . . wi (expressed
in dashed line).

Let us denote the path, shown by the dashed line (the lower solid line, re-
spectively), between u and b by pathdash(u, b) (pathsolid(u, b), respectively), and
denote the path, shown by the dashed line, between a and wi by pathdash(a, wi).

By the hypotheses and Lemma 3.1, the following holds:

SPG(a, b, dist(e)) ∧ SPG(u, a, dist(pathdash(u, b)) + dist(e))
∧ SPG(u, a, dist(pathsolid(u, b)) − dist(e)) ∧ SPG(u, b, dist(pathsolid(u, b)))
∧ SPG(u, b, dist(pathdash(u, b))).

The formula says the following: the shortest paths between a and b have
distance dist(e); the shortest paths between u and a have a distance of
dist(pathdash(u, b))+dist(e) and of dist(pathsolid(u, b))−dist(e); the shortest paths
between u and b have a distance of dist(pathsolid(u, b)) and of dist(pathdash(u, b)).
Hence

dist(pathdash(u, b)) + dist(e) = dist(pathsolid(u, b)) − dist(e)), and
dist(pathsolid (u, b)) = dist(pathdash(u, b)).

It follows that dist(e) = 0, contradictory to the positive edge-distance assump-
tion.

For (c), we illustrate the situation with Figure 2(I). Let i be the smallest
integer among [1 . . . k + 1] such that a shortest path between u and wi uses
edge e and every shortest path between u and wi−1 does not use edge e. Since
no shortest path from u to u uses e and edge e is on a shortest path between u
and v, i exists.

By the way vertex wi is chosen, subpath p21 = uw1 . . . wi−1 of p2 is the shortest
path between u and wi−1 both in G and G−e, and there is no shortest path of G
among vertices u, w1, . . . , wi−1 using edge e. By Lemma 3.1 and Lemma 3.5(a),

SPG(u, wi, d3 + d4 + dist(e)) ∧ SPG(u, a, d3) ∧ SPG(b, wi, d4) (1)
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holds. We now prove that e does not lie on any shortest paths among vertices
wi, . . . , wk , v in G. Otherwise, according to Lemma 3.1 and Lemma 3.5(b),

SPG(wi, v, d1 + d2 + dist(e)) ∧ SPG(wi, a, d1) ∧ SPG(b, v, d2) (2)

holds. From (1) and (2), since a shortest path between two vertices is not longer
than any other paths between the same vertices, we have

d3 + d4 + dist(e) ≤ d3 + d1, and d1 + d2 + dist(e) ≤ d4 + d2.

It follows that dist(e) ≤ 0, contradictory to the positive edge-distance as-
sumption. This implies that edge e does not lie on any shortest path among
wi, . . . , wk , v and therefore, no shortest path among wi, . . . , wk , v goes through
edge e.

Example 3.6. We now illustrate the last lemma by considering undirected
graph G+ε in Example 3.3. The shortest path between vertex j (u = j in the
Lemma) and vertex d (v = d in the Lemma) is p1 = j a b c d . Path p2 =
j i h g f e d is the shortest path between j and d not going through edge
ε. In Lemma 3.5(c), we can let the chosen vertex be h (wi = h in the Lemma).
Therefore, path( j , i) = j i is the shortest path between j and i and path(h, d ) =
h g f e d is the shortest path between h and d (no shortest paths among i and
j and among h, g , f , e, d go through edge (a, b)) according to Lemma 3.5(c).

Lemma 3.5(a) and (b) imply an “ordering” on the vertices of G. They suggest
that if one shortest path from an earlier vertex to a later vertex on path p2 goes
through edge e in one “direction” then every shortest path from any earlier
vertex to any later vertex on p2 goes through edge e in the same “direction”, so
long as the shortest path passes through edge e.

Given an undirected graph G where each edge has a positive distance and
an edge e = (a, b) ∈ G, the tuples of SPG can be classified into two kinds: �, the
set of tuples (x, y , d ) such that there is a shortest path through edge e between
x and y in G, and � = SPG − �. Lemma 3.5 implies that each shortest path of
G−e that is not in � can be regenerated, through at most two join operations,
by those shortest paths that do not go through edge e in G (i.e., in �). In order
to give a full description, we introduce some formulas.

For edge e ∈ G, let �G
e (x, y , d ) be a formula stating the fact that there is a

shortest path between x and y in G using edge e = (a, b), that is,

�G
e (x, y , d ) ≡ (∃d0, d1, d2, d3, d4) SPG(x, y , d ) ∧ [SPG(x, a, d1)

∧ SPG(b, y , d2) ∧ (d = d1 + d2 + dist(e)) ∨ SPG(x, b, d3)
∧ SPG(a, y , d4) ∧ (d = d3 + d4 + dist(e))].

Let �G
e (x, y , d ) be defined by

�G
e (x, y , d ) ≡ SPG(x, y , d ) ∧ ¬�G

e (x, y , d ).

Then �G
e (x, y , d ) states that the shortest paths between x and y in G have

distance of d but no such shortest paths use edge e. With the newly defined
formulas, Lemma 3.5(c) can be rewritten into the following form:
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Lemma 3.5(d): Let G be a graph where dist(g ) > 0 for each edge g . Suppose
there exists a shortest path p1 = u . . . ab . . . v from vertex u to vertex v of G
that goes through edge e = (a, b) in the order of ab (as in Figure 2(I)). Let
p2 = uw1 . . . wkv (u = w0 and v = wk+1) be a shortest path in G−e. Then there
exists a vertex wi (1 ≤ i ≤ k + 1) such that for subpaths p21 = uw1 . . . wi−1 and
p22 = wi . . . v of p2, �G

e (u, wi−1, dist(p21)) ∧ G−e(wi−1, wi) ∧ �G
e (wi, v, dist(p22))

holds. �

Let �G
e (x, y , d ) be the following:

(∃d1, d2)(∃w1, w2) �G
e (x, w1, d1)

∧ Ĝ−e(w1, w2) ∧ �G
e (w2, y , d2) ∧ (d = d1 + dist(w1, w2) + d2).

LEMMA 3.7. Given an undirected graph G satisfying dist(e) > 0 for each
edge e ∈ G, SPG−e is a subset of �G

e .

PROOF. Suppose SPG−e (x, y , d ) holds and we prove �G
e (x, y , d ) is true.

Since SPG−e (x, y , d ) holds, there exists a shortest path p = xw1 . . . wky in
G−e such that SPG−e (x, y , dist(p)). Let x = w0 and y = wk+1. Two cases
arise: (a) In G, none of the shortest paths between x and y uses edge e. Then
�G

e (x, y , d ) is true. Since Ĝ−e( y , y)∧�G
e ( y , y , 0) is true, �G

e (x, y , d ), Ĝ−e( y , y)
and �G

e ( y , y , 0) are all true. Therefore, �G
e (x, y , d ) holds. (b) Otherwise. There

is a shortest path between x and y in G using edge e. From Lemma 3.5(d), there
exists wi such that

�G
e (x, wi−1, d1) ∧ G−e(wi−1, wi) ∧ �G

e (wi, y , d2) ∧ (d = d1 + dist(wi−1, wi) + d2)
is true. Therefore, �G

e (x, y , d ) holds.

Now, Theorem 3.4 can be easily proved from Lemma 3.7.

Proof of Theorem 3.4 Let ψ(x, y , d ) ≡ �G
e (x, y , d )∧(∀d ′) [�G

e (x, y , d ′) → (d ≤
d ′)] Clearly, formula ψ is in FO(+, <). From Lemma 3.7, we know SPG−e ⊆ ψ .
On the other hand, suppose ψ(x, y , d ) holds. By the definition of SPG−e , there
exists d ′ such that SPG−e (x, y , d ′) holds. Since SPG−e ⊆ ψ , ψ(x, y , d ′) holds. By
the definition of ψ , there is at most one d ′′ for tuple (x, y) such that ψ(x, y , d ′′)
holds. So d = d ′. Thus ψ ⊆ SPG−e . �

Example 3.8. For a simple illustration of the Theorem, let us consider
graph G+ε of Example 3.3. Suppose we delete edge ε = (a, b). �

G+ε
ε ( j , d , 12)

is true since the shortest path j a b c d (SPG+ε
( j , d , 12) holds) between j

and d uses edge (a, b). The shortest path between j and d in G+ε − (a, b) is
path j i h g f e d . That is, SPG( j , d , 42) holds. �

G+ε
ε ( j , d , 42) is true since

�
G+ε
ε ( j , i, 19), G(i, h) and �

G+ε
ε (h, d , 15) all hold and the distance of edge (i, h)

is 8.

Lemma 3.7 reveals why we have such an incremental maintenance result
for undirected graphs. It says that the distance of a shortest path in G−e is
bounded by the distances of (three) shortest paths in G. A similar result holds
for acyclic digraphs, but not for general digraphs (see Section 4).

The algorithm for the maintenance under deletion is presented in Table II.
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Table II. Maintenance Queries for Deletion

% TABLE Graph(Start,Tail,Dist): A tuple (s,t,d) is in Graph if the distance

% of edge (s,t) is d; for each vertex v, tuple (v,v,0) is in Graph.

% TABLE ShortDis(Start,Tail,Dist): A tuple (s,t,d) of ShortDis means that the

% shortest distance between vertex s and vertex t is d; for each vertex x,

% tuple (x,x,0) is in ShortDis.

% TABLE Susp: tuples that may need to be modified when graph G changes.

% When deleting edge e=(a,b) where dist(e)>0, the shortest distances formed

% by the following paths could be affected: (1) any path from x through (a,b)

% to y, (2) any path from x through (b,a) to y.

INSERT INTO Susp(Start,Tail,Dist)

SELECT A.Start, A.Tail, A.Dist

FROM ShortDis A, ShortDis X, ShortDis Y

WHERE A.Start=X.Start AND A.Tail=Y.Tail AND

((X.Tail=a AND Y.Start=b AND dist(e)+X.Dist+Y.Dist=A.Dist) OR

(X.Tail=b AND Y.Start=a AND dist(e)+X.Dist+Y.Dist=A.Dist));

% TABLE Trust stores the shortest distance tuples that do not use the

% deleted edge e=(a,b).

INSERT INTO Trust(Start,Tail,Dist)

SELECT A.Start, A.Tail, A.Dist

FROM ShortDis A

WHERE NOT EXISTS (SELECT * FROM Susp X

WHERE X.Star=A.Star AND X.Tail=A.Tail);

% Remove edge e=(a,b) from TABLE Graph(Start,Tail,Dist).

DELETE FROM Graph(Start,Tail,Dist)

WHERE Start=a AND Tail=b;

% TABLE Temp: Stores the new tuples (u,v,d) expressing that there exists a

% path between vertex u and v with distance d; d may not be the shortest.

INSERT INTO Temp(Start,Tail,Dist)

SELECT A.Start, B.Tail, dist(G.Star,G.Tail)+X.Dist+Y.Dist

FROM TRUST A, Graph G, TRUST B

WHERE A.Tail=G.Star AND G.Tail=B.Star AND

(EXISTS (SELECT * FROM Susp X

WHERE X.Star=A.Star AND X.Tail=B.Tail));

% The result:

DELETE FROM ShortDis;

INSERT INTO ShortDis(Start,Tail,Dist)

(SELECT * FROM Trust)

UNION

(SELECT A.Start, A.Tail, MIN(A.Dist)

FROM Temp A

GROUP BY A.Start, A.Tail);

3.2 Incremental Algorithm for APSD≥0

We now discuss how to extend the maintenance results for APSD>0 to APSD≥0.
The following example shows that the incremental maintenance algorithms

for APSD>0 cannot be used to solve the APSD≥0 problem on the deletion
of 0-distance edges. (One can prove, similarly to the proofs of results in
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Section 3, that they work on non-negative edge insertions and positive edge
deletions.)

Example 3.9. Let G be a connected undirected graph where all edges have
0 distance. Whenever an edge is deleted, each tuple of SPG will also be deleted
by our algorithm, since the shortest path between every two vertices in the
graph has the same distance as that of a walk passing the deleted edge.

This example shows that G is not sp-bound under SPG if there are 0-distance
edges. When each edge of G has a positive distance, each tuple of SPG corre-
sponds to paths of G. When G has 0-distance edges, a tuple of SPG may cor-
respond to walks of G. This is why the algorithm on APSD>0 for edge deletion
does not work for 0-distance-edge deletions.

To solve this problem, we will maintain SPDG instead of SPG . The addition
of the length attribute allows us to map each tuple of SPDG to a path. We can
apply the algorithms for APSD>0 twice to maintain SPDG , once for distance
and once for length, in a nested way. The details of the algorithms are given in
Pang et al. [1999] and Pang [1999].

4. THE APSD PROBLEM IN DIGRAPHS

We now consider the incremental maintenance of the APSD problem in
digraphs without negative cycles.2 We first extend sp-boundness to ρ sp-
boundness and show that the ρ sp-bound digraphs form quite a large family of
diagraphs generalizing several previous families; then we give the incremental
algorithm for maintaining APSD after deleting an ρ sp-bound arc.

The notion of ρ sp-boundness is useful since all digraphs in this family can be
maintained in a similar way as those acyclic digraphs and undirected graphs.

4.1 The ρ sp-bound Diagraphs

We now extend the notion of sp-bound diagraphs. The extended definition de-
scribes a class of digraphs where APSD can be incrementally maintained in
FO(+, <). Intitutively, a ρ sp-bound digraph is a digraph in which, for each
shortest path, there exist at most ρ number of sequencing subpaths that share
a same arc.

Definition 4.1. (ρ sp-bound) Let ρ be a fixed positive integer. A digraph G
is said to be ρ sp-bound for arc e under SPG if for any shortest path px y =
xu1 . . . uky of SPG−e , there exist at most ρ + 1 distinct nodes ui1 , ui2 , . . . , uiρ+1 on
px y such that i1 < i2 . . . < iρ+1 and, for each j = 1, . . . , ρ, there exists a shortest
path of SPG from uij to uij+1 that uses arc e. A digraph G is ρ sp-bound under
SPG if it is ρ sp-bound under SPG for each arc e ∈ G. In the place of SPG , we
can also use other path-based relations such as TCG and SPDG ; when TCG is
used we do not require the path pxy to be a shortest path.

We note that the original notion of sp-bound is the same as that of 1 sp-
bound under TCG . Moreover, if a graph G is ρ sp-bound under TCG then G is ρ

2A cycle is said to be negative if its distance is negative. Note that the presence of negative cycles
implies that shortest walks can be unbounded.
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sp-bound under SPG and under SPDG ; if G is ρ sp-bound under SPG then G is
ρ sp-bound under SPDG .

LEMMA 4.2. A digraph G is ρ + 2 sp-bound under SPDG (or TCG or SPG) if
each SCC is ρ sp-bound under SPDG (or TCG or SPG).

PROOF. Suppose G is a graph such that each SCC of G is ρ sp-bound un-
der SPDG . Let e = (a, b), pxy = xu1 . . . uky be a shortest path of SPG−e , and
ui1 , ui2 , . . . , uim be nodes on pxy such that, for each j = 1, . . . , ρ + 1, there ex-
ists a path from uij to uij+1 that uses arc e. Clearly, a, b, ui2 , . . . , uim−1 are in a
common SCC, and ui2ui2+1 . . . uim−1 is a shortest path within that SCC. It follows
from the assumption that m − 2 ≤ ρ + 1, and hence m ≤ ρ + 3.

We now show that the class of ρ sp-bound diagraphs is quite general. We do
this by showing that two well known families of graphs are ρ sp-bound, and give
an example family of ρ sp-bound graphs that is not any of previously known
families.

PROPOSITION 4.3. (a) An acyclic graph G is 1 sp-bound (ρ = 1) under TCG,
SPG and SPDG. (b) A digraph without arc-join cycles is 2 sp-bound under TCG,
SPG and SPDG.3

PROOF. Let G be a digraph and e = (a, b) be an arc of G. We consider ρ

sp-boundness under the most basic path relation, namely TCG .
For (a), suppose G is acyclic, but not 1 sp-bound. Then there exist a path pxy =

xu1 . . . uky in G−e and three nodes ui1 , ui2 , ui3 such that there exist paths from
uij to uij+1 through e for j = 1, 2. Then ui2 is in a cycle with a, b, contradicting
the acyclicity assumption.

For (b), suppose G is a diagraph without arc-join cycles, but G is not 2
sp-bound. Then there exist a path pxy = xu1 . . . uky in G−e and four nodes
ui1 , ui2 , ui3 , ui4 such that i j < i j+1 and there exist paths pij = uij . . . ab . . . uij+1

in G from uij to uij+1 through e for j = 1, 2, 3. We now have two walks going
through e: the first is the concatenation of the tail half of p12 (starting from ab)
and the head half of p23 (ending at a) excluding ui2 , and the second is the con-
catenation of the tail half of p23 (starting at ab) and the head half of p34 (ending
at a) excluding ui3 . Let p1 denote the first walk and p2 the second. By removing
arcs if necessary, we can assume that p1 and p2 are cycles and they both include
ab as their beginning and a as their ends. Two cases arise. Case (i): p1 and p2
are not identical. Note that they both go through the arc e. Case (ii): p1 and
p2 are identical. Note that p1 (= p2) cannot have the form ab . . . ui2 . . . ui3 . . . a,
since ui2 . . . ui3 . . . a is a subpath of ui2 . . . ab . . . ui3 . Hence p1 (= p2) has the form
ab . . . ui3 . . . ui2 . . . a. Let p′ be the subpath ui3 . . . ui2 of p1. Concatenating p′ with
the subpath ui2ui2+1 . . . ui3−1ui3 of pxy we get a new cycle p3. (We remove arcs if
necessary, similar to above.) Then p1 and p3 are two cycles and they share all
arcs of p′. In all cases, G has arc-join cycles, contradictory to the assumption.

Example 4.4. Consider the digraphs G shown in Figure 3. The general form
of G is the digraph Gk shown in Figure 3.3 with V (Gk) = X ∪ Y ∪ Z where

3Two cycles are said to be arc-join cycles if they share a common arc.
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Fig. 3. (1) Digraph G3; (2) SPG3 ; (3) Digraph Gk .

Fig. 4. G is 2-path But Not ρ sp-bound (ρ < h).

|X | = k, |Y | = |Z | = 2(k − 1) and |V (Gk)| = 5k − 4; Figure 3.1 shows G3. In
digraph Gk , the number of paths from X 1 to X k is 4k−1, an exponential number
of |V (Gk)|.

Observe that Gk is 1 sp-bound under SPG , but it is not acyclic, and it is not
an �-path graph [Dong and Su 1995] for � < 4k−1.4 Consequently, the family
{Gi | i = 1, 2, . . . } is a family of 1 sp-bound non-acyclic diagraphs, but it is not
an �-path family for any �.

We note that the k-path digraphs and ρ sp-bound digraphs are not compara-
ble with each other in general. Under a certain condition, k-path digraphs are
ρ sp-bound digraphs. The incomparability is established by combining Exam-
ples 4.4 and 4.5. The special condition is considered after the next example.

Example 4.5. For any given h > 1, there exists a 2-path digraph G that is
not ρ sp-bound for ρ < h−1. Indeed, let G be the digraph expressed in Figure 4.

4A digraph is �-path if there exist at most � distinct paths between any pair of nodes.
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The shortest paths from wi to wj (i < j ) are depicted in solid line (in dotted
line, respectively) in G−e (in G, respectively). Clearly, for shortest path puv =
u . . . w1 . . . wi . . . w2h . . . v of G−e, there exist h distinct nodes w2, w4, . . . , w2h on
puv such that, for each j = 2, . . . , 2h − 2, there exists a shortest path of SPG
from wj to wj+2 that uses arc e. Therefore, G is not sp-bound for ρ < h − 1.

4.2 The Incremental Algorithms

We now consider the APSD problem for digraphs without negative cycles. We
will consider how to maintain SPDG , since the answer to the APSD problem
can be derived from SPDG .5

After insertions or deletions, we need to ensure that the new graphs still
contain no negative cycles. Clearly, the deletion of an arc will not introduce
negative cycles. We can check if an inserted arc introduces negative cycles in
FO(+, <) as follows:

LEMMA 4.6. Let G be a digraph without negative cycles and e = (a, b) be an
arc not in G. Then G+e has negative cycles if and only if there exist b, a, k, d
such that SPDG(b, a, k, d ) ∧ (d + dist(e) < 0) holds.

4.2.1 Inserting an Arc e = (a, b) into G. The next theorem can be proved
similarly to Theorem 3.2.

THEOREM 4.7. Let G be a digraph and e = (a, b) an arc such that G+e con-
tains no negative cycles. We can construct a formula ϕ of FO(+, <) from SPDG
and e such that SPDG+e ≡ ϕ.

4.2.2 Deleting an Arc e = (a, b) from G. The main result of this section is:

THEOREM 4.8. Suppose G is a diagraph without negative cycles and G is ρ

sp-bound under SPDG, and e is an arc of G. We can construct a formula ψ of
FO(+, <) from SPDG, e and G so that SPDG−e ≡ ψ .

PROOF. Intuitively, we will construct the formula ψ for computing SPDG−e

by exploiting the ρ sp-boundness; ψ will join shortest paths that do not
use e, and some additional work helps to ensure the resulting pathes are
shortest.

Formally, let �G
e (x, y , k, d ) express those paths of SPDG using arc e = (a, b),

and let �G
e (x, y , k, d ) express those paths of SPDG not using e:

�G
e (x, y , k, d ) ≡ SPDG(x, y , k, d ) ∧ SPDG(x, a, k1, d1)

∧ SPDG(b, y , k2, d2) ∧ (k = k1 + k2 + 1)
∧ (d = d1 + d2 + dist(e)).

�G
e (x, y , k, d ) ≡ SPDG(x, y , k, d ) ∧ ¬�G

e (x, y , k, d ).

Let the tuples of �G
e denote walks formed by concatenating the paths of �G

e
and Ĝ−e. We then extract tuples expressing the shortest paths from �G

e into

5For special cases, e.g. when each arc has positive distance or the underlying digraph is acyclic, we
can maintain SPG (instead of SPDG ), in ways similar to Section 3.
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Fig. 5. An sp-bound Digraph.

MPG
e , pull out the shortest paths with minimal length from MPG

e , and store
them in 	1. The tuples of SPDG−e are formed by concatenating 	1 up to ρ times
(see Figure 5). Finally, ψ is pulled out from the 	’s. Specially

�G
e (x, y , l , d ) ≡ (∃d ′, l ′) (∃w1, w2) �G

e (x, w1, l ′, d ′) ∧ Ĝ−e(w1, w2)
∧ [(l = l ′ + 1) ∧ (w1 �= w2) ∨ (l = l ′) ∧ (w1 = w2)]
∧ (d = d ′ + dist(w1, w2)),

MPG
e (x, y , l , d ) ≡ �G

e (x, y , l , d ) ∧ (∀d ′)
[
�G

e (x, y , l , d ′) → ((d ≤ d ′)
]
,

	1(x, y , l , d ) ≡ MPG
e (x, y , l , d ) ∧ (∀l ′)

[
MPG

e (x, y , l ′, d ) → (l ≤ l ′)
]
,

· · ·
�h

	(x, y , l , d ) ≡ (∃d1, d2) (∃l1, l2) (∃w) 	h−1(x, w, l1, d1) ∧ 	h−1(w, y , l2, d2)
∧ (l = l1 + l2) ∧ (d = d1 + d2),

MPh
	(x, y , l , d ) ≡ �h

	(x, y , l , d ) ∧ (∀d ′) (∀l ′)
[
�h

	(x, y , l ′, d ′) → ((d ≤ d ′)
]
,

	h(x, y , l , d ) ≡ MPh
	(x, y , l , d ) ∧ (∀l ′)

[
MPh

	(x, y , l ′, d ) → (l ≤ l ′)
]
,

ψ(x, y , l , d ) ≡ (∃h) 	h(x, y , l , d ) ∧ (h ≤ ρ)
∧ (∀l ′, d ′, h′) [	h′

(x, y , l ′, d ′) → (l ≤ l ′) ∧ (d ≤ d ′)].

Let p2 = uw1 . . . wkv be a shortest path from u to v (u = w0, v = wk+1) in G−e
such that SPDG−e (u, v, k+1, dist(p2)) holds and k+1 = length(p2). If no shortest
path from u to v in G goes through arc e then �G

e (u, v, k+1, dist(p2)). Otherwise,
there exists a shortest-path p1 from node u to node v that goes through arc
e = (a, b) such that SPDG(u, v, length(p1), dist(p1)) holds. Since G is ρ sp-bound,
there exist nodes wij ( j = 1, 2, . . . , h) on p2 where 0 = i0 < i1 < · · · < ih = k
and h ≤ ρ + 1 such that, in G, (i) there exists a shortest path from wij−1 to
wij that goes through arc e ( j = 1, 2, . . . , h), and (ii) there exists no shortest
path from wij−1 to wij −1 that goes through arc e ( j = 1, 2, . . . , h). Condition (ii)
implies �G

e (wij−1 , wij −1, i j − i j−1 − 1, dist(wij−1 , wij −1)) holds for j = 1, . . . , h.
Then the tuples of SPDG−e representing the path from wij−1 to wij are in 	1

( j = 1, 2, . . . , h). Similarly, the tuples of SPDG−e representing the path from
wij−1 to wij+1 are in 	2 ( j = 1, 2, . . . , h − 1). Continuing this process, we could
conclude that the tuple of SPDG−e (u, v, l , d ) is in ψ(x, y , l , d ).
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5. TRANSITIVE CLOSURE AND SHORTEST PATHS

We now extend our earlier results in two directions:
(1) The algorithms given earlier can be used to maintain the transitive clo-

sure for the type of graphs considered earlier. This is because the transitive
closure can be derived from the answer to the APSD problem.

(2) Our algorithms can be extended to maintain the shortest paths them-
selves in undirected graphs without negative edges or in digraphs without neg-
ative cycles. Roughly speaking, we use relation Spath(x, y)

G for the maintenance;
Spath(x, y)

G denotes the arc set of a shortest path from node x to node y if there
is a path, and it denotes ∅ otherwise. The interested readers can refer to Pang
[1999] for more details.

6. EMPIRICAL EVALUATION AND DISCUSSION ON COMPLEXITY ISSUES

In the previous sections, we have provided algorithms for the incremental main-
tenance of the APSD>0 problem, the APSD≥0 problem, and the transitive clo-
sure on undirected graphs and on sp-bound digraphs. Those algorithms are
FO(+, <) algorithms, each requiring just a small bounded number of relational
join operations as discussed in previous sections. This implies that these al-
gorithms are desirable from a complexity perspective: they can be executed
and optimized directly on relational database systems, and they allow efficient
parallel execution. Below we first provide some experimental results to evalu-
ate the efficiency of our algorithms, and then give some further comments on
complexity issues.

6.1 Empirical Evaluation

We now report results of experiments conducted to evaluate the execution-
time performance of our algorithm, for the single edge deletion case of the
shortest-distance problem on undirected graphs.6 Our maintenance algorithm
is implemented in SQL, and the static algorithm is an SQL implementation
(in Transact-SQL – an extended SQL language) of Floyd’s method [Sedgewick
1990].

We did two sets of experiments. The first set involves small graphs with be-
tween 100 and 2171 edges, and the second involves a large graph with nearly
1 million edges. In all graphs, the edge weights are randomly generated. The
smaller graphs have randomly generated edges, and have varying vertex de-
grees. The large graph contains 1000 vertices and all possible edges between
them, and the weights of the edges are uniformly distributed. The experiments
on these graphs show the influence of graph size, node degree and edge weight
on run time, and the speedup achieved by our algorithm.

Experimental results reported in Figure 6 indicate that substantial perfor-
mance gain is achieved using our incremental algorithm over the static al-
gorithm. These experiments were performed on an INGRES database system
running on a Sun SPARC machine (with 150MHz CPU and 160MB memory).

6Since many papers have studied the algorithm for the edge insertion case, we will not test its
performance in this article.
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Fig. 6. Comparison: Execution time vs. graph size per edge deletion for shortest distances in
undirected graphs.

The x-axis is the number of edges in a randomly generated graph, and the
y-axis is the time spent by the algorithm under consideration. The time shown
in the figure is the average time used by the algorithm under consideration for
three edge deletions, each deleting a randomly chosen edge. The figure shows
that, as the size of the graph increases, the time spent on maintenance (the
solid curve) does not vary much, whereas the time used by the static algorithm
(which recomputes the shortest distance from scratch) increases significantly
(the dashed curve). The reason is that the incremental algorithm avoids a lot of
unnecessary computation when maintaining relation SP. Moreover, the main-
tenance algorithm uses much less time than the recomputing from scratch
algorithm. In fact, the speed up ranges from 4 for small graphs to hundreds for
larger graphs.

Table III shows that the incremental algorithm achieves more speedup as
the size and density of the graph increase. Note that Nv and Ne indicate the
size of the graph; Ne/Nv is the average degree of the nodes of the graphs, and
hence is an indicator of the density of the graph; and TS/TI is the speedup
achieved by the incremental algorithm over the static algorithm.

We also tested our deletion algorithm on an SQL Server 2000 (with a Pentium
4 3.20GHz CPU and 1 GB RAM) on a large graph with nearly 1 million edges.
Figure 7 shows the distribution of edge-length and small length (length ≤ 20)
for this graph. The execution time used is given in Table IV. For this large
graph, our algorithm can maintain the shortest path with between 41 seconds
and 1 minute 53 seconds while the static algorithm needs more than five hours.
The average speedup is around 233. The computation speed also implies that
our deletion algorithm can be used to sequentially delete a small set of edges
in practice. Our algorithm uses less time for the deletion of edges with larger
weights, than for the deletion of edges with smaller weights. We believe that
this is due to the fact that edges with small weights are involved in shortest
paths more often than edges with large weights.
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Table III. Comparison on Run Time over Graphs with Varying Characteristics

Graphs NoEdges(Ne) NoVertices(Nv) TS TI Ne/Nv TS/TI

G1 100 29 0.902 0.221 3.448 4.081
G2 117 36 1.341 0.311 3.250 4.311
G3 235 55 4.682 0.275 4.727 17.025
G4 299 65 7.641 0.285 4.600 26.810
G5 392 81 13.511 0.245 4.839 55.372
G6 670 104 27.111 0.247 6.442 109.761
G7 980 91 20.131 0.237 10.769 84.940
G8 1292 106 31.332 0.254 12.189 123.354
G9 1201 146 85.212 0.238 8.226 358.033
G10 1716 171 129.440 0.251 10.035 517.760
G11 1677 139 75.191 0.268 11.992 290.563
G12 2171 181 176.492 0.277 11.994 637.155

TS : average time used by the static algorithm (seconds).
TI : average time used by the incremental algorithm (seconds).

Fig. 7. Distribution on edge-length and on small edge (length ≤ 20).

6.2 Discussion

Our algorithms can be optimized by using indexing. Indeed, let e = (a, b) be
the edge inserted or deleted. Our algorithms derive the new tuples of APSD
(or transitive closure) relation for those vertices u that can reach a and those
vertices that can be reached from b. Index for these two types of reachability
can allow us to execute the algorithms faster.

For the shortest distance problem in undirected graphs, our algorithm on
single edge deletion is the first to utilize the property that each shortest dis-
tance of G−e can be formed through concatenating at most two shortest paths
of G via an edge of G−e. This property helps us avoid at least one additional join
operation and one termination check at the path-regeneration stage adopted in
many sequential/parallel incremental algorithms.7 Most previous approaches
to this problem treated undirected graphs and directed graphs in the same

7For example, in DRed Algorithm [Gupta et al. 1993b], this stage is to put back those deleted tuples
that have alternative derivations.
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Table IV. Performance Evaluation on the 1 Million Edge Graph

Edge Length No of Susp No of Trust No of Affected Paths Time (min:sec)

1 4328 993673 2378 01:16
1 8460 989541 3213 01:26
1 10148 987853 5044 01:27
1 8532 989469 4538 01:17
1 10800 987201 5510 01:53
2 2780 995221 1353 01:21

13 8 997993 4 00:46
13 0 998001 0 00:41
21 0 998001 0 00:40
11 10 997991 10 00:46
16 2 997999 0 00:43
20 2 997999 2 01:14

manner and, therefore, they did not take advantage of the special properties
of undirected graphs. Moreover, we extended this property to the digraphs
(ρ sp-bound) in the article and found a new class of digraphs, which could be
maintained in a complexity similar to that for undirected graphs.

For the transitive closure in digraphs with cycles, we use the auxiliary rela-
tions SPG , which keeps the shortest length (of derivations) between each pair
of nodes for the maintenance of transitive closure. In this way, deleting an arc
will only lead to the deletion of those derived tuples (u, v, l ) in SPG such that
there is a path p from u to v going through the deleted arc and length(p) = l .
This leads to a small set of deleted (and recomputed) tuples (u, v, l ). The num-
ber of tuples deleted by this algorithm is no more, and it should typically be
much smaller, than the number of tuples deleted by the algorithms in Harrison
and Dietrich [1992]; Kuchenhoff [1991]; Urpi and Olive [1992]; Gupta et al.
[1992, 1993b] and Ceri and Widom [1994]. Therefore, it could save the time for
recomputing new derived tuples. For instance, consider the graph in Figure 3
and suppose the deleted arc is ( y1, y2). The algorithm first deletes the shaded
tuples in Figure 3(2). Then using join operations upon the unshaded data de-
rive those tuples that either should not have been deleted in the first step or
have a new shortest length. All the shaded tuples (except tuple ( y1, y2, 1)) are
rederived with two joins in this step.

7. RELATED WORK

This article extends the results of Pang et al. [1999].
For a digraph with n nodes and m arcs, Even and Gazit [1985] gives a full

dynamic algorithm that requires O(n2) sequential time for an arc insertion
and/or an arc cost decrease, and O(mn+n2 log n) time for an arc deletion and/or
an arc cost increase; Roditty [2003] gives an algorithm to maintain the tran-
sitive closure matrix in a total running time of O(mn + n2). More recently,
Roditty and Zwick [2004] gives an almost linear time fully dynamic algorithm
for the transitive closure problem for directed graphs. Demetrescu and Ital-
iano [2003] presents a fully dynamic algorithm that requires O(mnpolylog(n))
space with O(n2polylog(n)) amortized time per update. The algorithm in
Ausiello et al. [1992] is for graphs with nice topologies such as trees and
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outerplanar graphs. Djidjev et al. [2000] achieves logarithmic query and up-
date times for planar digraphs through graph decomposition. Feuerstein and
Marchetti-Spaccamela [1993] and Klein et al. [1994] also consider planar
graphs. All these previous dynamic algorithms and batch algorithms for the
APSD problem use elaborate data structures and need a recursive mechanism.
There is not any previously known more efficient algorithm specifically for undi-
rected graphs or sp-bound digraphs. Since most commercial database systems
are relational database systems, which do not directly support recursion, a more
powerful host language is needed for those algorithms to maintain the APSD
views.

Given a recursive query, the nonrecursive incremental evaluation approach
uses nonrecursive programs to compute the difference of the answers to the
query against successive databases updates. The mechanism used in this ap-
proach is called a “First-Order Incremental Evaluation System” in Dong and
Topor [1992] and “Dyn-FO” in Patnaik and Immerman [1994]. For undirected
graphs, reachability, connectivity, bipartiteness and the minimum spanning
forests problems have first-order incremental algorithms for edge insertion and
edge deletion [Dong and Su 1995; Patnaik and Immerman 1994]. Dong and
Kotagiri [1997] considers maintaining views defined by constrained transitive
closure queries in directed graphs with weights, but for insertion only.

Comparing the algorithms of Dong and Su [1995] and Patnaik and
Immerman [1994] with ours for the transitive closure problem in undirected
graphs, their algorithms are based on the maintenance of spanning forests of
the given undirected graph while ours are not. Our algorithms are structurally
simple and do not need to maintain the order of edges, a successor relation on
all vertices. The algorithms based on maintaining spanning forests are hard
to convert to solve the APSD problem since the set of all edges on the shortest
paths does not necessarily have a “tree-like” structure and, therefore, single
modification to the undirected graph may cause the reconstruction of O(|V |)
number of spanning trees (where V is the set of vertices of the graph). Our
algorithms also have a unifying scheme of computation, for transitive closure
in undirected graphs, in acyclic digraphs [Dong and Pang 1997], and for the
APSD > 0 (or APSD≥0) problem in undirected graphs.

Our algorithms are in FO(+, <), using “+” and “<” to add and select the
minimum length of paths. The storage demands of our algorithms stay within
the same order of magnitude as the algorithm of Dong and Su [1995].

Gupta, Mumick and Subrahmanian [Gupta et al. 1993b] give two general
algorithms for view maintenance: Counting algorithm and DRed (Delete and
Rederive) algorithm. The counting algorithm stores the number of alternative
derivations for each derived tuple in a view and works on nonrecursive views
defined by SQL or Datalog. The DRed algorithm works on recursive views (nega-
tion and aggregation are allowed). When a tuple (or an edge or an arc) is deleted
from the base relations, the DRed algorithm works in two steps: (1) Delete those
derived tuples that depend upon the deleted base tuple (i.e. if a derived tuple
has a derivation tree that contains the deleted base tuple). This step normally
deletes more than necessary; (2) Then the DRed algorithm refines this overes-
timation by considering alternative derivations of the deleted tuples. When the
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DRed algorithm is used for the transitive closure problem, deleting a tuple can
require regenerating a large portion of the data in the view from scratch.

For maintaining transitive closure, our algorithm has a similar space com-
plexity to that of the DRed algorithm of Gupta et al. [1993a]. When deleting
a tuple, the time complexity of DRed Algorithm is related to the size of the
cluster including that tuple. The time complexity of our algorithm is related to
the number of cycles including the tuple, it is no more expensive than the DRed
algorithm and in many situations it is much cheaper. Our method is different
from the counting method.

This article provided first-order maintenance results to more general classes
of graphs than earlier studies. Indeed, the class of sp-bound graphs is more
general than the classes of graphs that were known earlier to be first-order
maintainable.

8. CONCLUDING REMARKS

We have given FO(+, <) algorithms for the incremental maintenance of the
APSD>0 problem, the APSD≥0 problem, and the transitive closure. Since our
algorithms belong to FO(+, <), they have a low parallel complexity. They also
make additional optimization techniques such as those designed for relational
database systems possible. These results extend earlier ones on the mainte-
nance of transitive closure of weighted undirected graphs and on the mainte-
nance of shortest distance of weighted undirected graphs. The FO(+, <) incre-
mental algorithms for arc insertion and deletion in ρ sp-bounded digraphs also
extend the boundary of previous results for digraphs.
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